Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 23;7(9):2589-2596.
doi: 10.1021/acssensors.2c00775. Epub 2022 Sep 7.

Engineered Biosensors in an Encapsulated and Deployable System for Environmental Chemical Detection

Affiliations

Engineered Biosensors in an Encapsulated and Deployable System for Environmental Chemical Detection

Brooke Luisi et al. ACS Sens. .

Abstract

The long-term exposure of low levels of the fungicide, 2-phenylphenol (2-PP), to the environment presents a hazard to human and aquatic health. The cost and difficulty in large-scale production limit the use of existing sensors to detect 2-PP for applications such as personal protection and persistent environmental monitoring of large areas. While advances have been made in using whole cells as biosensors for specific chemical detection, a whole-cell biosensor system with robust biocontainment for field deployment and a strong visual reporter for readouts in the deployed environment has yet to be realized. Here, engineered biosensors in an encapsulated and deployable system (eBEADS) were created to demonstrate a portable, no-power living sensor for detection of 2-PP in the environment. A whole-cell living sensor to detect 2-PP was developed in Escherichia coli by utilizing the 2-PP degradation pathway with an agenetic amplification circuit to produce a visual colorimetric output. To enable field deployment, a physical biocontainment system comprising polyacrylamide alginate beads was designed to encapsulate sensor strains, support long-term viability without supplemental nutrients, and allow permeability of the target analyte. Integration of materials and sensing strains has led to the development of a potential deployable end-to-end living sensor that, with the addition of an amplification circuit, has up to a 66-fold increase in β-galactosidase reporter output over non-amplified strains, responding to as little as 1 μM 2-PP while unencapsulated and 10 μM 2-PP while encapsulated. eBEADS enable sensitive and specific in-field detection of environmental perturbations and chemical threats without electronics.

Keywords: 2-phenylphenol (2-PP); hydrogel; polyacrylamide alginate (PAA); transcriptional activation; whole-cell biosensor.

PubMed Disclaimer

Publication types

LinkOut - more resources