Is DIA proteomics data FAIR? Current data sharing practices, available bioinformatics infrastructure and recommendations for the future
- PMID: 36074795
- PMCID: PMC10155627
- DOI: 10.1002/pmic.202200014
Is DIA proteomics data FAIR? Current data sharing practices, available bioinformatics infrastructure and recommendations for the future
Abstract
Data independent acquisition (DIA) proteomics techniques have matured enormously in recent years, thanks to multiple technical developments in, for example, instrumentation and data analysis approaches. However, there are many improvements that are still possible for DIA data in the area of the FAIR (Findability, Accessibility, Interoperability and Reusability) data principles. These include more tailored data sharing practices and open data standards since public databases and data standards for proteomics were mostly designed with DDA data in mind. Here we first describe the current state of the art in the context of FAIR data for proteomics in general, and for DIA approaches in particular. For improving the current situation for DIA data, we make the following recommendations for the future: (i) development of an open data standard for spectral libraries; (ii) make mandatory the availability of the spectral libraries used in DIA experiments in ProteomeXchange resources; (iii) improve the support for DIA data in the data standards developed by the Proteomics Standards Initiative; and (iv) improve the support for DIA datasets in ProteomeXchange resources, including more tailored metadata requirements.
Keywords: data independent acquisition; data repositories; data standards; proteomics data; spectral libraries.
© 2022 The Authors. Proteomics published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Gillet, L. C. , Navarro, P. , Tate, S. , Röst, H. , Selevsek, N. , Reiter, L. , Bonner, R. , & Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11(6), O111.016717. 10.1074/mcp.O111.016717 - DOI - PMC - PubMed
-
- Meier, F. , Brunner, A. D. , Frank, M. , Ha, A. , Bludau, I. , Voytik, E. , Kaspar‐Schoenefeld, S. , Lubeck, M. , Raether, O. , Bache, N. , Aebersold, R. , Collins, B. C. , Röst, H. L. , & Mann, M. (2020). diaPASEF: Parallel accumulation‐“serial fragmentation combined with data‐independent acquisition. Nature Methods, 17(12), 1229–1236. 10.1038/s41592-020-00998-0 - DOI - PubMed
-
- Rosenberger, G. , Koh, C. C. , Guo, T. , Röst, H. L. , Kouvonen, P. , Collins, B. C. , Heusel, M. , Liu, Y. , Caron, E. , Vichalkovski, A. , Faini, M. , Schubert, O. T. , Faridi, P. , Ebhardt, H. A. , Matondo, M. , Lam, H. , Bader, S. L. , Campbell, D. S. , Deutsch, E. W. , … Aebersold, R. (2014). A repository of assays to quantify 10,000 human proteins by SWATH‐MS. 10.1038/sdata.2014.31 - DOI - PMC - PubMed
-
- Zhu, T. , Zhu, Y. , Xuan, Y. , Gao, H. , Cai, X. , Piersma, S. R. , Pham, T. V. , Schelfhorst, T. , Haas, R. R. G. D. , Bijnsdorp, I. V. , Sun, R. , Yue, L. , Ruan, G. , Zhang, Q. , Hu, M. , Zhou, Y. , Van Houdt, W. J. , Le Large, T. Y. S. , Cloos, J. , … Guo, T. (2020). DPHL: A DIA pan‐human protein mass spectrometry library for robust biomarker discovery. Genomics, Proteomics & Bioinformatics, 18(2), 104–119. 10.1016/j.gpb.2019.11.008 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R24 GM127667/GM/NIGMS NIH HHS/United States
- BB/T019557/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- U19 AG023122/AG/NIA NIH HHS/United States
- BB/T019670/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- BB/P024599/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
LinkOut - more resources
Full Text Sources
