Evolution of nacre- and prisms-related shell matrix proteins in the pen shell, Atrina pectinata
- PMID: 36075178
- DOI: 10.1016/j.cbd.2022.101025
Evolution of nacre- and prisms-related shell matrix proteins in the pen shell, Atrina pectinata
Abstract
The molluscan shell is a good model for understanding the mechanisms underlying biomineralization. It is composed of calcium carbonate crystals and many types of organic molecules, such as the matrix proteins, polysaccharides, and lipids. The pen shell Atrina pectinata (Pterioida, Pinnidae) has two shell microstructures: an outer prismatic layer and an inner nacreous layer. Similar microstructures are well known in pearl oysters (Pteriidae), such as Pinctada fucata, and many kinds of shell matrix proteins (SMPs) have been identified from their shells. However, the members of SMPs that consist of the nacreous and prismatic layers of Pinnidae bivalves remain unclear. In this study, we identified 114 SMPs in the nacreous and prismatic layers of A. pectinata, of which only seven were found in both microstructures. 54 of them were found to bind calcium carbonate. Comparative analysis of nine molluscan shell proteomes showed that 69 of 114 SMPs of A. pectinata were found to have sequential similarity with at least one or more SMPs of other molluscan species. For instance, nacrein, tyrosinase, Pif/BMSP-like, chitinase (CN), chitin-binding proteins, CD109, and Kunitz-type serine proteinase inhibitors are widely shared among bivalves and gastropods. Our results provide new insights for understanding the complex evolution of SMPs related to nacreous and prismatic layer formation in the pteriomorph bivalves.
Keywords: Atrina pectinata; Biomineralization; Bivalvia; Evolution; Mollusca; Proteome; Transcriptome.
Copyright © 2022. Published by Elsevier Inc.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
