Electron-transport pathway of the NADH-dependent haem oxygenase system of rat liver microsomal fraction induced by cobalt chloride
- PMID: 36076
- PMCID: PMC1186518
- DOI: 10.1042/bj1780323
Electron-transport pathway of the NADH-dependent haem oxygenase system of rat liver microsomal fraction induced by cobalt chloride
Abstract
The hepatic microsomal haem oxygenase activity of rats treated with CoCl2 was studied kinetically by measuring biliverdin, the immediate product of the reaction. Biliverdin was extracted with diethyl ether/ethanol mixture, and was determined by the difference between A690 and A800. The apparent Km value for NADPH (at 50 microM-haematin) was about 0.2 microM when an NADPH-generating system was used, whereas that for NADH was about 630 microM. Essentially the same Vmax. values were obtained for both the NADH- and NADPH-dependent haem oxygenase reactions. No synergism was observed with NADH and NADPH. The NADH-dependent reaction was competitively inhibited by NADP+, with a Ki of about 10 microM. The inhibitoin of the NADH-dependent reaction by the antibody against rat liver microsomal NADPH-cytochrome c reductase was essentially complete, with a pattern similar to that of the NADPH-dependent reaction. The immunochemical experiment and the comparison of the kinetic values with the reported data on isolated NADH-cytochrome b5 reductase and NADPH--cytochrome c reductase indicated the involvement of the latter enzyme in NADH-dependent haem oxygenation by microsomal fraction in situ.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
