Investigating neuroprotective roles of Bacopa monnieri extracts: Mechanistic insights and therapeutic implications
- PMID: 36076495
- DOI: 10.1016/j.biopha.2022.113469
Investigating neuroprotective roles of Bacopa monnieri extracts: Mechanistic insights and therapeutic implications
Abstract
Bacopa monnieri (Brahmi) is a well-known perennial, creeping herb of the Indian Ayurveda system; it contains numerous bioactive phytoconstituents implicated in the therapeutic management of several life-threatening diseases. This herb was used by Ancient Vedic scholars due to its pharmacological effect, especially as a nerve tonic and nootropic booster. However, to better understand the roles of Bacopa monnieri extract (BME) in neurological disorders and memory-related diseases, it is necessary to understand its active phytochemical constituents and their molecular mechanisms. Several clinical studies suggested that BME have neuroprotective effects, making it worth revising a notable herb. Here we investigated the contours of BME's phytochemistry and pharmacological features, focusing on neuronal disorders. We further analyzed the underlying molecular mechanisms in therapeutic intervention. Various clinical concerns and synergistic potential of BME were explored for their effective use in cognition and neuroprotection. The generation of reactive oxygen species increases neuroinflammation and neurotoxicity and is associated with Tau and amyloid-beta (Aβ) aggregation, leading to a neurological disorder. Our findings provide deeper mechanistic insights into the neuroprotective roles of BME, which can be further implicated in the therapeutic management of neurological disorders and exerting cognitive-enhancing effects.
Keywords: Alzheimer's disease; Bacopa monnieri; Bacosides; Neuroprotection; Reactive Oxygen Species; Tau aggregates.
Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
