Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug 28;11(17):2671.
doi: 10.3390/cells11172671.

Transforming Growth Factor-Beta Signaling in Cancer-Induced Cachexia: From Molecular Pathways to the Clinics

Affiliations
Review

Transforming Growth Factor-Beta Signaling in Cancer-Induced Cachexia: From Molecular Pathways to the Clinics

Rita Balsano et al. Cells. .

Abstract

Cachexia is a metabolic syndrome consisting of massive loss of muscle mass and function that has a severe impact on the quality of life and survival of cancer patients. Up to 20% of lung cancer patients and up to 80% of pancreatic cancer patients are diagnosed with cachexia, leading to death in 20% of them. The main drivers of cachexia are cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), macrophage inhibitory cytokine 1 (MIC-1/GDF15) and transforming growth factor-beta (TGF-β). Besides its double-edged role as a tumor suppressor and activator, TGF-β causes muscle loss through myostatin-based signaling, involved in the reduction in protein synthesis and enhanced protein degradation. Additionally, TGF-β induces inhibin and activin, causing weight loss and muscle depletion, while MIC-1/GDF15, a member of the TGF-β superfamily, leads to anorexia and so, indirectly, to muscle wasting, acting on the hypothalamus center. Against this background, the blockade of TGF-β is tested as a potential mechanism to revert cachexia, and antibodies against TGF-β reduced weight and muscle loss in murine models of pancreatic cancer. This article reviews the role of the TGF-β pathway and to a minor extent of other molecules including microRNA in cancer onset and progression with a special focus on their involvement in cachexia, to enlighten whether TGF-β and such other players could be potential targets for therapy.

Keywords: TGF-β; cachexia; cancer-related syndrome.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
TGF-β signaling and its main roles in cancer progression and in cachexia: Canonical SMAD-dependent pathway: in proximal and distal skeletal muscles, SMAD3 signaling pathway results in the oxidation and nitrosylation of ryanodine receptor 1 (RyR1), which, in turn, reduces Ca2+ channels in the sarcoplasmic reticulum and causes muscle weakness; furthermore, SMAD3 induces the transcription of Nox4 gene increasing the production of ROS that oxidize RyR1. Non-canonical JNK/p38 MAPK signaling pathway affects EMT in many tissues promoting cancer growth; c. TGF-β/SMAD3 pathway leads to an increase in fibrosis in the subcutaneous adipose tissue.
Figure 2
Figure 2
Schematic representation about how selected miRNAs affect the activity of TGF-β pathway in skeletal muscles during lung and pancreatic tumor growth.

References

    1. Tisdale M.J. Molecular Pathways Leading to Cancer Cachexia. Physiology. 2005;20:340–348. doi: 10.1152/physiol.00019.2005. - DOI - PubMed
    1. Fearon K., Strasser F., Anker S.D., Bosaeus I., Bruera E., Fainsinger R.L., Jatoi A., Loprinzi C., MacDonald N., Mantovani G., et al. Definition and Classification of Cancer Cachexia: An International Consensus. Lancet Oncol. 2011;12:489–495. doi: 10.1016/S1470-2045(10)70218-7. - DOI - PubMed
    1. Tisdale M.J. The “Cancer Cachectic Factor. ” Supportive Care Cancer. 2003;11:73–78. doi: 10.1007/s00520-002-0408-6. - DOI - PubMed
    1. Anker M.S., Holcomb R., Muscaritoli M., von Haehling S., Haverkamp W., Jatoi A., Morley J.E., Strasser F., Landmesser U., Coats A.J.S., et al. Orphan Disease Status of Cancer Cachexia in the USA and in the European Union: A Systematic Review. J. Cachexia Sarcopenia Muscle. 2019;10:22–34. doi: 10.1002/jcsm.12402. - DOI - PMC - PubMed
    1. Argilés J.M., Busquets S., Stemmler B., López-Soriano F.J. Cancer Cachexia: Understanding the Molecular Basis. Nat. Rev. Cancer. 2014;14:754–762. doi: 10.1038/nrc3829. - DOI - PubMed

Publication types

Substances