Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug 26;14(17):3510.
doi: 10.3390/nu14173510.

Plant-Derived (Poly)phenols and Their Metabolic Outcomes: The Pursuit of a Role for the Gut Microbiota

Affiliations
Review

Plant-Derived (Poly)phenols and Their Metabolic Outcomes: The Pursuit of a Role for the Gut Microbiota

Perla Lopes de Freitas et al. Nutrients. .

Abstract

Plant-derived (poly)phenolic compounds have been undoubtedly shown to promote endocrine homeostasis through the improvement of diverse metabolic outcomes. Amongst diverse potential mechanisms, the prebiotic modulatory effects exerted by these compounds on the gut microbiota have supported their nutraceutical application in both experimental and clinical approaches. However, the comprehension of the microbiota modulatory patterns observed upon (poly)phenol-based dietary interventions is still in its infancy, which makes the standardization of the metabolic outcomes in response to a given (poly)phenol a herculean task. Thus, this narrative review sought to gather up-to-date information on the relationship among (poly)phenols intake, their modulatory effect on the gut microbiota diversity, and consequent metabolic outcomes as a supportive tool for the future design of experimental approaches and even clinical trials.

Keywords: (poly)phenols; gut microbiota; host metabolism; metabolic disorders; prebiotics.

PubMed Disclaimer

Conflict of interest statement

The authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
Biological fate of ingested plant-derived (poly)phenols and their metabolic outcomes. Schematic diagram summarizes the main metabolic outcomes promoted by in vivo administration of: (1) capsaicin, (2) resveratrol, (3) epigallocatechin-3-gallate, and (4) quercetin. Despite their limited absorption and low bioavailability, these compounds consistently improve diverse metabolic outcomes. On the other hand, they also modulate the colon microbiota, albeit the currently available data do not support yet whether such modulation is a feasible mechanism of action for their metabolic properties. HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein; GLU, blood glucose; INS, insulin; DNL, de novo lipogenesis, TAG, triacylglycerols; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; WAT, white adipose tissue; BW, body weight. The arrows imply the kinetics routes; question mark (?) implies lack of consistent data to implicate the respective pathway in the displayed metabolic outcomes. The diagram has been created with BioRender.com.

References

    1. Margulis L., Fester R. Bellagio conference and book. Symbiosis as Source of Evolutionary Innovation: Speciation and Morphogenesis. Conference—25–30 June 1989, Bellagio Conference Center, Italy. Symbiosis. 1991;11:93–101. - PubMed
    1. Ley R.E., Lozupone C.A., Hamady M., Knight R., Gordon J.I. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 2008;6:776–788. doi: 10.1038/nrmicro1978. - DOI - PMC - PubMed
    1. Rook G., Backhed F., Levin B.R., McFall-Ngai M.J., McLean A.R. Evolution, human-microbe interactions, and life history plasticity. Lancet. 2017;390:521–530. doi: 10.1016/S0140-6736(17)30566-4. - DOI - PubMed
    1. Simon J.C., Marchesi J.R., Mougel C., Selosse M.A. Host-microbiota interactions: From holobiont theory to analysis. Microbiome. 2019;7:5. doi: 10.1186/s40168-019-0619-4. - DOI - PMC - PubMed
    1. Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I. The human microbiome project. Nature. 2007;449:804–810. doi: 10.1038/nature06244. - DOI - PMC - PubMed

LinkOut - more resources