Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug;76(2):363-75.
doi: 10.1161/01.cir.76.2.363.

Sequence of mitral valve motion and transmitral blood flow during manual cardiopulmonary resuscitation in dogs

Sequence of mitral valve motion and transmitral blood flow during manual cardiopulmonary resuscitation in dogs

M P Feneley et al. Circulation. 1987 Aug.

Abstract

According to the thoracic pump model of cardiopulmonary resuscitation (CPR), the heart serves as a passive conduit for blood flow from the pulmonary to the systemic vasculature, necessitating an open mitral valve and anterograde transmitral blood flow during chest compression. To assess the applicability of this model to manual CPR techniques, two-dimensional echocardiograms were recorded from the right chest wall and/or the esophagus in nine dogs (18 to 26 kg) during manual CPR. The aortic valve opened with chest compression and closed with release, while the pulmonary and tricuspid valve leaflets closed with compression and opened during release. The mitral valve remained open during ventilation alone and during abdominal compressions. With the onset of brief, high-velocity (high-impulse) chest compressions, the mitral valve closed rapidly and the left ventricle was deformed, whether compressions were applied to the sternum or the left mid-chest wall. The mitral valve reopened with release of each compression. Left atrial echocardiographic contrast injections confirmed the absence of anterograde transmitral blood flow during high-impulse compression and its presence during release. Failure of mitral leaflet approximation during chest compression was observed only when a very low-velocity, prolonged (low-impulse) compression technique was used, or when regions that did not directly overlie the heart were compressed. Consistent with these observations, simultaneous recordings of the left ventricular and left atrial pressures during high-impulse sternal compressions in five dogs (19 to 25 kg) demonstrated peak and mean left ventriculoatrial pressure gradients of 38.5 +/- 4.0 and 13.5 +/- 2.9 mm Hg, respectively, and these pressure gradients declined with less impulsive compressions. The observations made during all but low-impulse chest compressions are inconsistent with the thoracic pump model, and support direct cardiac compression as the primary mechanism of forward blood flow with more impulsive manual chest compression techniques.

PubMed Disclaimer

Publication types

LinkOut - more resources