Hospital-onset bacteremia and fungemia: An evaluation of predictors and feasibility of benchmarking comparing two risk-adjusted models among 267 hospitals
- PMID: 36082774
- PMCID: PMC9588439
- DOI: 10.1017/ice.2022.211
Hospital-onset bacteremia and fungemia: An evaluation of predictors and feasibility of benchmarking comparing two risk-adjusted models among 267 hospitals
Abstract
Objectives: To evaluate the prevalence of hospital-onset bacteremia and fungemia (HOB), identify hospital-level predictors, and to evaluate the feasibility of an HOB metric.
Methods: We analyzed 9,202,650 admissions from 267 hospitals during 2015-2020. An HOB event was defined as the first positive blood-culture pathogen on day 3 of admission or later. We used the generalized linear model method via negative binomial regression to identify variables and risk markers for HOB. Standardized infection ratios (SIRs) were calculated based on 2 risk-adjusted models: a simple model using descriptive variables and a complex model using descriptive variables plus additional measures of blood-culture testing practices. Performance of each model was compared against the unadjusted rate of HOB.
Results: Overall median rate of HOB per 100 admissions was 0.124 (interquartile range, 0.00-0.22). Facility-level predictors included bed size, sex, ICU admissions, community-onset (CO) blood culture testing intensity, and hospital-onset (HO) testing intensity, and prevalence (all P < .001). In the complex model, CO bacteremia prevalence, HO testing intensity, and HO testing prevalence were the predictors most associated with HOB. The complex model demonstrated better model performance; 55% of hospitals that ranked in the highest quartile based on their raw rate shifted to a lower quartile when the SIR from the complex model was applied.
Conclusions: Hospital descriptors, aggregate patient characteristics, community bacteremia and/or fungemia burden, and clinical blood-culture testing practices influence rates of HOB. Benchmarking an HOB metric is feasible and should endeavor to include both facility and clinical variables.
Figures
References
-
- Central-line–associated bloodstream infections. Centers for Disease Control and Prevention website. https://arpsp.cdc.gov/profile/infections/clabsi. Published 2020. Accessed March 7, 2022.
-
- Data summary of HAIs in the US: assessing progress, 2006–2016. Centers for Disease Control and Prevention website. https://www.cdc.gov/hai/data/archive/data-summary-assessing-progress.html. Published 2017. Accessed March 7, 2022.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
