Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul:2022:537-540.
doi: 10.1109/EMBC48229.2022.9871869.

Multi-Site Mild Traumatic Brain Injury Classification with Machine Learning and Harmonization

Multi-Site Mild Traumatic Brain Injury Classification with Machine Learning and Harmonization

Biozid Bostami et al. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul.

Abstract

Traumatic brain injury (TBI) can drastically affect an individual's cognition, physical, emotional wellbeing, and behavior. Even patients with mild TBI (mTBI) may suffer from a variety of long-lasting symptoms, which motivates researchers to find better biomarkers. Machine learning algorithms have shown promising results in detecting mTBI from resting-state functional network connectivity (rsFNC) data. However, data collected at multiple sites introduces additional noise called site-effects, resulting in erroneous conclusions. Site errors are controlled through a process called harmonization, but its use in classifying neuroimaging data has been addressed lightly. With the ongoing need to improve mTBI detection, this study shows that harmonization should be integrated into the machine learning process when working with multi-site neuroimaging datasets.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources