Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Oct 30:269:104703.
doi: 10.1016/j.jprot.2022.104703. Epub 2022 Sep 7.

Proteomic analysis reveals molecular mechanism of Cd2+ tolerance in the leaves of halophyte Halogeton glomeratus

Affiliations
Review

Proteomic analysis reveals molecular mechanism of Cd2+ tolerance in the leaves of halophyte Halogeton glomeratus

Lirong Yao et al. J Proteomics. .

Abstract

Halogeton glomeratus (H. glomeratus) is categorized as a halophyte, it can potentially endure not only salt but also heavy metals. The aim of this work was to study the molecular mechanisms underlying the Cd2+ tolerance of halophyte H. glomeratus seedlings. For that we used a combination of physiological characteristics and data-independent acquisition-based proteomic approaches. The results revealed that the significant changes of physiological characteristics of H. glomeratus occurred under approximately 0.4 mM Cd2+ condition and that Cd2+ accumulated in Cd2+-treated seedling roots, stems and leaves. At the early stage of Cd2+ stress, numerous differentially abundant proteins related to "phosphoenolpyruvate carboxylase", "transmembrane transporters", and "vacuolar protein sorting-associated protein" took important roles in the response of H. glomeratus to Cd2+ stress. At the later stage of Cd2+ stress, some differentially abundant proteins involved in "alcohol-forming fatty acyl-CoA reductase", "glutathione transferase", and "abscisic acid receptor" were considered to regulate the adaptation of H. glomeratus exposed to Cd2+ stress. Finally, we found various detoxification-related differentially abundant proteins related to Cd2+ stress. These biological processes and regulators synergistically regulated the Cd2+ tolerance of H. glomeratus. SIGNIFICANCE: The halophyte, H.glomeratus, has a strong tolerance to salinity, also survives in the heavy metal stress. At present, there are few reports on the comprehensive characterization and identification of Cd2+ response and adaption related regulators in H.glomeratus. This research focuses on the molecular mechanisms of H. glomeratus tolerance to Cd2+ stress at proteome levels to uncover the novel insight of the Cd2+-related biological processes and potential candidates involved in the response and adaption mechanism. The results will help elucidate the genetic basis of this species' tolerance to Cd2+ stress and develop application prospect of wild genetic resources to heavy metal phytoremediation.

Keywords: Biological processes; Data-independent acquisition; Differentially abundant proteins; Halogeton glomeratus; Molecular mechanisms.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declared that they have no competing interests.

Similar articles

Cited by

Publication types

LinkOut - more resources