Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul:2022:3582-3585.
doi: 10.1109/EMBC48229.2022.9871252.

A Novel Method for ECG Artifact Removal from EEG without Simultaneous ECG

A Novel Method for ECG Artifact Removal from EEG without Simultaneous ECG

Joseph R Isler et al. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul.

Abstract

The electrocardiogram (ECG) is a common source of electrical artifact in electroencephalogram (EEG). Here, we present a novel method for removing ECG artifact that requires neither simultaneous ECG nor transformation of the EEG signals. The approach relies upon processing a subset of EEG channels that contain ECG artifact to identify the times of each R-wave of the ECG. Within selected brief epochs, data in each EEG channel is signal-averaged ± 60 ms around each R-wave to derive an ECG template specific to each channel. This template is subtracted from each EEG channel which are aligned with the R-waves. The methodology was developed using two cohorts of infants: one with 128-lead EEG including an ECG reference and another with 32-lead EEG without ECG reference. The results for the first cohort validated the methodology the ECG reference and the second demonstrated its feasibility when ECG was not recorded. This method does not require independent, simultaneous recording of ECG, nor does it involve creation of an artifact template based on a mixture of EEG channel data as required by other methods such as Independent Component Analysis (ICA). Spectral analysis confirms that the method compares favorably to results using simultaneous recordings of ECG. The method removes ECG artifact on an epoch by epoch level and does not require stationarity of the artifact. Clinical Relevance - This approach facilitates the removal of ECG noise in frequency bands known to play a central role in brain mechanisms underlying cognitive processes.

PubMed Disclaimer

Publication types

LinkOut - more resources