Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2022 Jul:2022:5066-5069.
doi: 10.1109/EMBC48229.2022.9871326.

A fully automatic deep learning algorithm to segment rectal Cancer on MR images: a multi-center study

Multicenter Study

A fully automatic deep learning algorithm to segment rectal Cancer on MR images: a multi-center study

Jovana Panic et al. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul.

Abstract

The aim of the study is to present and tune a fully automatic deep learning algorithm to segment colorectal cancers (CRC) on MR images, based on a U-Net structure. It is a multicenter study, including 3 different Italian institutions, that used 4 different MRI scanners. Two of them were used for training and tuning the systems, while the other two for the validation. The implemented algorithm consists of a pre-processing step to normalize and to highlight the tumoral area, followed by the CRC segmentation using different U-net structures. Automatic masks were compared with manual segmentations performed by three experienced radiologists, one at each center. The two best performing systems (called mdl2 and mdl3), obtained a median Dice Similarity Coefficient of 0.68(mdl2) - 0.69(mdl3), precision of 0.75(md/2) - 0.71(md/3), and recall of 0.69(mdl2) - 0.73(mdl3) on the validation set. Both systems reached high detection rates, 0.98 and 0.95, respectively, on the validation set. These encouraging results, if confirmed on larger dataset, might improve the management of patients with CRC, since it can be used as a fast and precise tool for further radiomics analyses. Clinical Relevance - To provide a reliable tool able to automatically segment CRC tumors that can be used as first step in future radiomics studies aimed at predicting response to chemotherapy and personalizing treatment.

PubMed Disclaimer

Publication types