Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul:2022:2585-2591.
doi: 10.1109/EMBC48229.2022.9871879.

A System-based Approach for the Evaluation of Electromechanical Properties of Brain Tumors

A System-based Approach for the Evaluation of Electromechanical Properties of Brain Tumors

B S Arjun et al. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul.

Abstract

We have developed a semi-automated system integrated with MEMS-based electromechanical sensors to characterize human brain tumors. The electrical impedance and elastic moduli of three types of brain tumors and six normal brain regions were evaluated using the system. The impedance and elastic modulus of glioma was found to be significantly lower than the normal region. It was also observed that the white matter tissues had higher impedance and elastic moduli compared with the grey matter of the same neuroanatomic location. There were observable differences in the electromechanical behavior of gliomas, which originate from glial cells to that of schwannoma and meningioma of different cellular origins. Clinical Relevance- The observations suggest that simultaneous electromechanical characterization of brain tumors can serve as an effective tool for tumor delineation. The developed tool can be used alongside gold standard histopathological analysis to better understand human brain tumors.

PubMed Disclaimer

Publication types

LinkOut - more resources