Membrane fusion in prokaryotes: bacteriophage phi 6 membrane fuses with the Pseudomonas syringae outer membrane
- PMID: 3608985
- PMCID: PMC553953
- DOI: 10.1002/j.1460-2075.1987.tb02388.x
Membrane fusion in prokaryotes: bacteriophage phi 6 membrane fuses with the Pseudomonas syringae outer membrane
Abstract
Protein-triggered membrane fusion in the prokaryotic system is described using the lipid-containing enveloped bacterial virus phi 6 and its host, the Gram-negative bacterium Pseudomonas syringae. Bacteriophage particles can be fused to form multiple particles where two or more nucleocapsids are surrounded by a single membrane vesicle with a volume proportional to the number of fused particles. For fusion to occur, a fusogenic protein is required in the membrane of the participating phage particles. Upon infection of the host cell, fusion of the viral membrane with the bacterial membrane takes place without leakage of the periplasmic enzyme alkaline phosphatase to the extracellular supernatant. There is a time-dependent mixing of fluorescent phage phospholipids with the bacterial membrane lipids between 5 and 20 min post-infection. The phage membrane proteins and phospholipids co-purify with the bacterial outer membrane of infected cells. The fusion is independent of divalent cations and pH, resembling Sendai virus fusion with the plasma membrane. This is the first targeted, protein-dependent fusion event described in prokaryotes.
Similar articles
-
The nucleocapsid of bacteriophage phi 6 penetrates the host cytoplasmic membrane.EMBO J. 1988 Jun;7(6):1821-9. doi: 10.1002/j.1460-2075.1988.tb03014.x. EMBO J. 1988. PMID: 3169005 Free PMC article.
-
Function of pili in bacteriophage phi 6 penetration.J Gen Virol. 1985 Nov;66 ( Pt 11):2461-9. doi: 10.1099/0022-1317-66-11-2461. J Gen Virol. 1985. PMID: 2865329
-
Quantitation of the adsorption and penetration stages of bacteriophage phi 6 infection.Virology. 1989 Jul;171(1):229-38. doi: 10.1016/0042-6822(89)90530-8. Virology. 1989. PMID: 2741342
-
Control of membrane morphogenesis in bacteriophage.Int Rev Cytol. 1980;68:53-96. doi: 10.1016/s0074-7696(08)62307-4. Int Rev Cytol. 1980. PMID: 6785249 Review. No abstract available.
-
Changes induced in cell membranes adsorbing animal viruses, bacteriophages, and colicins.Curr Top Microbiol Immunol. 1983;102:57-99. doi: 10.1007/978-3-642-68906-2_2. Curr Top Microbiol Immunol. 1983. PMID: 6301761 Review. No abstract available.
Cited by
-
ICTV Virus Taxonomy Profile: Cystoviridae.J Gen Virol. 2017 Oct;98(10):2423-2424. doi: 10.1099/jgv.0.000928. Epub 2017 Sep 20. J Gen Virol. 2017. PMID: 28933690 Free PMC article.
-
Opinion: Cell entry machines: a common theme in nature?Nat Rev Microbiol. 2005 Apr;3(4):349-58. doi: 10.1038/nrmicro1131. Nat Rev Microbiol. 2005. PMID: 15759040 Free PMC article. Review.
-
Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfaces.Viruses. 2022 Jan 21;14(2):204. doi: 10.3390/v14020204. Viruses. 2022. PMID: 35215798 Free PMC article.
-
Discovery and Classification of the φ6 Bacteriophage: An Historical Review.Viruses. 2023 May 31;15(6):1308. doi: 10.3390/v15061308. Viruses. 2023. PMID: 37376608 Free PMC article. Review.
-
Electron cryo-tomographic structure of cystovirus phi 12.Virology. 2008 Mar 1;372(1):1-9. doi: 10.1016/j.virol.2007.10.013. Epub 2007 Nov 26. Virology. 2008. PMID: 18022662 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases