Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 6;13(31):9056-9061.
doi: 10.1039/d2sc02210a. eCollection 2022 Aug 10.

Selective desaturation of amides: a direct approach to enamides

Affiliations

Selective desaturation of amides: a direct approach to enamides

Xinwei Li et al. Chem Sci. .

Abstract

C(sp3)-H bond desaturation has been an attractive strategy in organic synthesis. Enamides are important structural fragments in pharmaceuticals and versatile synthons in organic synthesis. However, the dehydrogenation of amides usually occurs on the acyl side benefitting from enolate chemistry like the desaturation of ketones and esters. Herein, we demonstrate an Fe-assisted regioselective oxidative desaturation of amides, which provides an efficient approach to enamides and β-halogenated enamides.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Representative drugs containing enamide fragments.
Scheme 1
Scheme 1. The significance and challenges for the synthesis of enamides from amides.
Scheme 2
Scheme 2. Mechanistic studies.
Scheme 3
Scheme 3. Mechanistic investigations.

Similar articles

Cited by

References

    1. Perez-Sayans M. Somoza-Martin J. M. Barros-Angueira F. Rey J. M. Garcia-Garcia A. Cancer Treat. Rev. 2009;35:707–713. doi: 10.1016/j.ctrv.2009.08.003. - DOI - PubMed
    1. Carbery D. R. Org. Biomol. Chem. 2008;6:3455–3460. doi: 10.1039/B809319A. - DOI - PubMed
    2. Gopalaiah K. Kagan H. B. Chem. Rev. 2011;111:4599–4657. doi: 10.1021/cr100031f. - DOI - PubMed
    3. Masson G. Bernadat G. Synlett. 2014;25:2842–2867. doi: 10.1055/s-0034-1379166. - DOI
    4. Masson G. Courant T. Dagousset G. Synthesis. 2015;47:1799–1856. doi: 10.1055/s-0034-1378706. - DOI
    5. Wang M. X. Chem. Commun. 2015;51:6039–6049. doi: 10.1039/C4CC10327K. - DOI - PubMed
    1. Pohlki F. Doye S. Chem. Soc. Rev. 2003;32:104–114. doi: 10.1039/B200386B. - DOI - PubMed
    2. Dehli J. R. Legros J. Bolm C. Chem. Commun. 2005:973–986. doi: 10.1039/B415954C. - DOI - PubMed
    1. Linstead R. P. Braude E. A. Mitchell P. W. D. Wooldridge K. R. H. Jackman L. M. Nature. 1952;169:100–103. doi: 10.1038/169100a0. - DOI
    2. Mamedov E. A. Cortés Corberán V. Appl. Catal., A. 1995;127:1–40. doi: 10.1016/0926-860X(95)00056-9. - DOI
    3. Kung H. H. Kung M. C. Appl. Catal., A. 1997;157:105–116. doi: 10.1016/S0926-860X(97)00028-8. - DOI
    4. Madeira L. M. Portela M. F. Catal. Rev. 2002;44:247–286. doi: 10.1081/CR-120001461. - DOI
    5. Zhang X. Fried A. Knapp S. Goldman A. S. Chem. Commun. 2003:2060–2061. doi: 10.1039/B304357F. - DOI - PubMed
    6. Wang S. Zhu Z. H. Energy Fuels. 2004;18:1126–1139. doi: 10.1021/ef0340716. - DOI
    7. Ansari M. B. Park S.-E. Energy Environ. Sci. 2012;5:9419. doi: 10.1039/C2EE22409G. - DOI
    8. Schümperli M. T. Hammond C. Hermans I. ACS Catal. 2012;2:1108–1117. doi: 10.1021/cs300212q. - DOI
    9. Voica A.-F. Mendoza A. Gutekunst W. R. Fraga J. O. Baran P. S. Nat. Chem. 2012;4:629–635. doi: 10.1038/nchem.1385. - DOI - PMC - PubMed
    10. Wertz S. Studer A. Green Chem. 2013;15:3116. doi: 10.1039/C3GC41459K. - DOI
    11. Chen B. Wang L. Gao S. ACS Catal. 2015;5:5851–5876. doi: 10.1021/acscatal.5b01479. - DOI
    12. Sheldon R. A. Catal. Today. 2015;247:4–13. doi: 10.1016/j.cattod.2014.08.024. - DOI
    13. Wendlandt A. E. Stahl S. S. Angew. Chem., Int. Ed. 2015;54:14638–14658. doi: 10.1002/anie.201505017. - DOI - PMC - PubMed
    14. Zhou M. J. Zhu S. F. Zhou Q. L. Chem. Commun. 2017;53:8770–8773. doi: 10.1039/C7CC04761D. - DOI - PubMed
    1. Göttker-Schnetmann I. White P. Brookhart M. J. Am. Chem. Soc. 2004;126:1804–1811. doi: 10.1021/ja0385235. - DOI - PubMed
    2. Bolig A. D. Brookhart M. J. Am. Chem. Soc. 2007;129:14544–14545. doi: 10.1021/ja075694r. - DOI - PMC - PubMed
    3. Giri R. Maugel N. Foxman B. M. Yu J.-Q. Organometallics. 2008;27:1667–1670. doi: 10.1021/om8000444. - DOI
    4. Dobereiner G. E. Crabtree R. H. Chem. Rev. 2010;110:681–703. doi: 10.1021/cr900202j. - DOI - PubMed
    5. Johnson T. C. Morris D. J. Wills M. Chem. Soc. Rev. 2010;39:81–88. doi: 10.1039/B904495G. - DOI - PubMed
    6. Choi J. MacArthur A. H. Brookhart M. Goldman A. S. Chem. Rev. 2011;111:1761–1779. doi: 10.1021/cr1003503. - DOI - PubMed
    7. Gunanathan C. Milstein D. Science. 2013;341:1229712. doi: 10.1126/science.1229712. - DOI - PubMed
    8. Bheeter C. B. Jin R. Bera J. K. Dixneuf P. H. Doucet H. Adv. Synth. Catal. 2014;356:119–124. doi: 10.1002/adsc.201300795. - DOI
    9. Yao W. Zhang Y. Jia X. Huang Z. Angew. Chem., Int. Ed. 2014;53:1390–1394. doi: 10.1002/anie.201306559. - DOI - PubMed
    10. Werkmeister S. Neumann J. Junge K. Beller M. Chemistry. 2015;21:12226–12250. doi: 10.1002/chem.201500937. - DOI - PubMed
    11. Kumar A. Bhatti T. M. Goldman A. S. Chem. Rev. 2017;117:12357–12384. doi: 10.1021/acs.chemrev.7b00247. - DOI - PubMed
    12. Huang L. Bismuto A. Rath S. A. Trapp N. Morandi B. Angew. Chem., Int. Ed. 2021;60:7290–7296. doi: 10.1002/anie.202015837. - DOI - PMC - PubMed