Analysis of the socioeconomic impact due to COVID-19 using a deep clustering approach
- PMID: 36092471
- PMCID: PMC9444158
- DOI: 10.1016/j.asoc.2022.109606
Analysis of the socioeconomic impact due to COVID-19 using a deep clustering approach
Abstract
One of the main problems that countries are currently having is being able to measure the impact of the pandemic in other areas of society (for example, economic or social). In that sense, being able to combine variables about the behavior of COVID-19 with other variables in the environment, to build models about its impact, which help the decision-making of national authorities, is a current challenge. In this sense, this work proposes an approach that allows monitoring the socioeconomic behavior of the regions/departments of a country (in this case, Colombia) due to the effect of COVID-19. To do this, an approach is proposed in which the behavior of the infected is initially predicted, and together with other context variables (climate, economics and socials) determines the current socioeconomic situation of a region. This classification of a region, with the pattern that characterizes it, is a fundamental input for those who make decisions. Thus, this work presents an approach based on machine learning techniques to identify regions with similar socioeconomic behaviors due to COVID-19, so they should eventually have similar public policies. The proposed hybrid model initially consists of a time series prediction model of infected, to which are added several context variables (climate, socioeconomic, incidence of COVID-19 at the level of deaths, suspects, etc.) in an unsupervised learning model, to determine the socioeconomic impact in the regions. Particularly, the unsupervised model groups similar regions together, and the pattern of each group describes the socioeconomic similarities between them, to help decision-makers in the process of defining policies to be implemented in the regions. The experiments showed the ability of the hybrid model to follow the evolution of the regions after 4 weeks. The quality metrics for the predictive model were around the values of 0.35 for MAPE and 0.68 for , and in the case of the clustering model were around the values of 0.3 for the Silhouette index and 0.6 for the Davies-Boulding index. The hybrid model allowed determining things like some regions that initially belonged to a group with a very low incidence of positive cases and very unfavorable socioeconomic conditions, became part of groups with moderately high incidences. Our preliminary results are very satisfactory since they allow studying the evolution of the socioeconomic impact in each region/department.
Keywords: COVID-19; Clustering evolution; Socioeconomic model; Time series prediction model; Unsupervised model.
© 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
Similar articles
-
Machine learning models for the prediction of the SEIRD variables for the COVID-19 pandemic based on a deep dependence analysis of variables.Comput Biol Med. 2021 Jul;134:104500. doi: 10.1016/j.compbiomed.2021.104500. Epub 2021 May 24. Comput Biol Med. 2021. PMID: 34052570 Free PMC article.
-
Early detection of change patterns in COVID-19 incidence and the implementation of public health policies: A multi-national study.Public Health Pract (Oxf). 2021 Nov;2:100064. doi: 10.1016/j.puhip.2020.100064. Epub 2020 Dec 10. Public Health Pract (Oxf). 2021. PMID: 33969330 Free PMC article.
-
Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach.Wellcome Open Res. 2020 Jun 15;5:56. doi: 10.12688/wellcomeopenres.15819.3. eCollection 2020. Wellcome Open Res. 2020. PMID: 32587900 Free PMC article.
-
Community detection using unsupervised machine learning techniques on COVID-19 dataset.Soc Netw Anal Min. 2021;11(1):28. doi: 10.1007/s13278-021-00734-2. Epub 2021 Mar 10. Soc Netw Anal Min. 2021. PMID: 33717366 Free PMC article. Review.
-
Prostate cancer disparities in South Carolina: early detection, special programs, and descriptive epidemiology.J S C Med Assoc. 2006 Aug;102(7):241-9. J S C Med Assoc. 2006. PMID: 17319238 Review.
Cited by
-
A Semi-supervised Sensing Rate Learning based CMAB scheme to combat COVID-19 by trustful data collection in the crowd.Comput Commun. 2023 Jun 1;206:85-100. doi: 10.1016/j.comcom.2023.04.030. Epub 2023 Apr 29. Comput Commun. 2023. PMID: 37197296 Free PMC article.
References
-
- Dell’Ariccia Giovanni, Mauro Paolo, Spilimbergo Antonio, Zettelmeyer Jeromin. Economic policies for the COVID-19 war. IMF Blog. 2020;1
LinkOut - more resources
Full Text Sources