Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens
- PMID: 36093325
- PMCID: PMC9421094
- DOI: 10.1016/j.bioactmat.2022.08.011
Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications.
Keywords: 1O2, Singlet oxygen; APDT, Antibacterial photodynamic therapy; APTT, Antibacterial photothermal therapy; Antibacterial photodynamic therapy; BODIPY, Boron dipyrromethene; BP, Black phosphorus; Biomaterials; CS, Chitosan; CUR, Curcumin; CV, Crystal violet; Ce6, Chlorin e6; Conjugation; HYP, Hypocrellin; Hp, Hematoporphyrin; Hydrogels; ICG, Indocyanine green; MB, Methylene blue; MRSA, Methicillin-resistant Staphylococcus aureus; PCL, Poly(ε-caprolactone); PDA, Polydopamine; PDI, Photodynamic inactivation; PEG, Poly(ethylene glycol); PEI, Polyethylamine; PPIX, Protoporphyrin IX; PSs, Photosensitizers; PVA, Poly(vinyl alcohol); Photosensitizers; Polymers; RB, Rose bengal; ROS, Reactive oxygen species; α-CD, α-cyclodextrin.
© 2022 The Authors.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures














References
-
- Wang Y., Jin Y., Chen W., Wang J., Chen H., Sun L., et al. Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 2019;358:74–90.
-
- Hofer U. The cost of antimicrobial resistance. Nat. Rev. Microbiol. 2019;17:3. - PubMed
-
- Chua S.L., Liu Y., Yam J.K.H., Chen Y., Vejborg R.M., Tan B.G.C., et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun. 2014;5:1–12. - PubMed
-
- Geneva W. 2014. WHO's First Global Report on Antibiotic Resistance Reveals Serious, Worldwide Threat to Public Health.
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous