Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Sep;36(5):591-608.
doi: 10.1007/s40259-022-00550-w. Epub 2022 Sep 12.

Targeting Amyloid Fibrils by Passive Immunotherapy in Systemic Amyloidosis

Affiliations
Review

Targeting Amyloid Fibrils by Passive Immunotherapy in Systemic Amyloidosis

Mario Nuvolone et al. BioDrugs. 2022 Sep.

Abstract

Systemic amyloidoses are characterized by the unrelenting deposition of autologous proteins as highly ordered fibrils in target organs. The ensuing, potentially fatal organ dysfunction is the result of the combined damage caused by the proteotoxic effect of prefibrillar species and by the cytotoxicity and the structural alterations produced by the amyloid fibrils. Current therapy is focused on eliminating the amyloid protein, thus extinguishing the amyloid cascade at its origin. While this approach may end the cell damage caused by prefibrillar aggregates and prevent further amyloid accumulation, the noxious effects of the amyloid fibrils persist and may hamper the recovery of organ function, which is the ultimate goal of therapy as it is necessary to improve the quality of life and extend survival. Preclinical studies indicate that the clearance of amyloid deposits can be accelerated by specific antibodies targeting amyloid fibrils that activate complement-mediated macrophages and giant cell phagocytosis, possibly promoting the recovery of organ function. Measuring the therapeutic effect of anti-amyloid agents is still a matter of research. In recent years, several monoclonal antibodies targeting amyloid deposits have been tested in clinical trials with mixed outcomes. Recent encouraging results from phase I/II trials, new anti-amyloid agents, and new antibody engineering offer hope that effective amyloid removal will be accomplished in the near future, accelerating organ recovery and improving quality of life and survival.

PubMed Disclaimer

Conflict of interest statement

Mario Nuvolone is an inventor on a patent application unrelated to this work, and received research funding from Oncopeptides and Gate Bioscience. Alice Nevone declares no conflicts of interest. Giampaolo Merlini is a member of the Advisory Board of Janssen and Pfizer.

References

    1. Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349(6):583–596. doi: 10.1056/NEJMra023144. - DOI - PubMed
    1. Merlini G, Dispenzieri A, Sanchorawala V, et al. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primers. 2018;4(1):38. doi: 10.1038/s41572-018-0034-3. - DOI - PubMed
    1. Shi J, Guan J, Jiang B, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci U S A. 2010;107(9):4188–4193. doi: 10.1073/pnas.0912263107. - DOI - PMC - PubMed
    1. Lavatelli F, Imperlini E, Orru S, et al. Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis. FASEB J. 2015;29(11):4614–4628. doi: 10.1096/fj.15-272179. - DOI - PubMed
    1. Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94(8):1008–1010. doi: 10.1161/01.RES.0000126569.75419.74. - DOI - PubMed