Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 1:253:123861.
doi: 10.1016/j.talanta.2022.123861. Epub 2022 Aug 28.

Development of quantitative structure-retention relationship models to improve the identification of leachables in food packaging using non-targeted analysis

Affiliations

Development of quantitative structure-retention relationship models to improve the identification of leachables in food packaging using non-targeted analysis

Ziyun Xu et al. Talanta. .

Abstract

Quantitative structure-retention relationship (QSRR) models can be used to predict the chromatographic retention time of chemicals and facilitate the identification of unknown compounds, notably with non-targeted analysis. In this study, QSRR models were developed from the data obtained for 178 pure chemical standards and four types of analytical columns (C18, phenylhexyl, pentafluorophenyl, cyano) in liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). First, different data partitioning ratios and feature selection methods [random forest (RF) and support vector machine (SVM)] were tested to build models to predict chromatographic retention times based on 2D molecular descriptors. The internal and external performances of the non-linear (RF) and corresponding linear predictive models were systematically compared, and RF models resulted in better predictive capacities [p < 0.05, with an average PVE (proportion of variance explained) value of 0.89 ± 0.02] than linear models (0.79 ± 0.03). For each column, the resulting model was applied to identify leachables from actual plastic packaging samples. An in-depth investigation of the top 20 most intense molecular features revealed that all false-positives could be identified as outliers in the QSRR models (outside of the 95% prediction bands). Furthermore, analyzing a sample on multiple chromatographic columns and applying the associated QSRR models increased the capacity to filter false positives. Such an approach will contribute to a more effective identification of unknown or unexpected leachables in plastics (e.g. non-intended added substances), therefore refining our understanding of the chemical risks associated with food contact materials.

Keywords: Food packaging; Mass spectrometry; Non-intentionally added substances; Non-targeted analysis; Plastics.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources