Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 23;24(37):6711-6715.
doi: 10.1021/acs.orglett.2c02433. Epub 2022 Sep 12.

Organocatalytic Enantioselective γ-Position-Selective Mannich Reactions of β-Ketocarbonyl Derivatives

Affiliations

Organocatalytic Enantioselective γ-Position-Selective Mannich Reactions of β-Ketocarbonyl Derivatives

Venkati Bethi et al. Org Lett. .

Abstract

Catalytic asymmetric Mannich reactions of β-ketocarbonyl derivatives (such as β-ketoesters and (2-oxopropyl)phosphonate), resulting in the formation of a C-C bond at the γ-position of the β-ketocarbonyl derivatives with high enantioselectivities, are reported. The bond formation at the α-position of the β-ketoester was reversible, and the γ-position-reacted product δ-amino β-ketoester derivative was kinetically formed and was stable. The dynamic kinetic process was key for the direct access to the γ-position-reacted products from β-ketocarbonyls under catalytic conditions.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Mannich Reactions of β-Ketocarbonyls
E = electrophiles; for simplicity, changes in charge or protonation are not shown.
Scheme 2
Scheme 2. Treatment of 4aa under the Catalytic Conditions with Amine C and Oxalic Acid
Scheme 3
Scheme 3. Reactions of 4aa under the Catalytic Conditions with Amine C and Oxalic Acid
Scheme 4
Scheme 4. Transformations of the γ-Position Reaction Products

References

    1. Govender T.; Arvidsson P. I.; Maguire G. E. M.; Kruger H. G.; Naicker T. Enantioselective Organocatalyzed Transformations of β-Ketoesters. Chem. Rev. 2016, 116, 9375–9437. 10.1021/acs.chemrev.6b00156. - DOI - PubMed
    1. Wasa M.; Liu R. Y.; Roche S. P.; Jacobsen E. N. Asymmetric Mannich Synthesis of α-Amino Esters by Anion-Binding Catalysis. J. Am. Chem. Soc. 2014, 136, 12872–12875. 10.1021/ja5075163. - DOI - PMC - PubMed
    2. You Y.; Luo S. Catalytic Asymmetric Mannich Type Reaction with Tri-/Difluoro- orTrichloroacetaldimine Precursors. Org. Lett. 2018, 20, 7137–7140. 10.1021/acs.orglett.8b03083. - DOI - PubMed
    3. Xu H.; Nazli A.; Zou C.; Wang Z.-P.; He Y. Bench-stable Imine Surrogates for the One-pot and Catalytic Asymmetric Synthesis of α-Amino Esters/Ketones. Chem. Commun. 2020, 56, 14243–14246. 10.1039/D0CC06055K. - DOI - PubMed
    4. You Y.; Zhang L.; Cui L.; Mi X.; Luo S. Catalytic Asymmetric Mannich Reaction with N-Carbamoyl Imine Surrogates of Formaldehyde and Glyoxylate. Angew. Chem., Int. Ed. 2017, 56, 13814–13818. 10.1002/anie.201707005. - DOI - PubMed
    5. Hatano M.; Horibe T.; Ishihara K. Chiral Lithium (I) Binaphtholate Salts for the Enantioselective Direct Mannich-Type Reaction with a Change of Syn/Anti and Absolute Stereochemistry. J. Am. Chem. Soc. 2010, 132, 56–57. 10.1021/ja909874b. - DOI - PubMed
    6. Song J.; Wang Y.; Deng L. The Mannich Reaction of Malonates with Simple Imines Catalyzed by Bifunctional Cinchona Alkaloids: Enantioselective Synthesis of β-Amino Acids. J. Am. Chem. Soc. 2006, 128, 6048–6049. 10.1021/ja060716f. - DOI - PMC - PubMed
    7. Lou S.; Taoka B. M.; Ting A.; Schaus S. E. Asymmetric Mannich Reactions of β-Keto Esters with Acyl Imines Catalyzed by Cinchona Alkaloids. J. Am. Chem. Soc. 2005, 127, 11256–11257. 10.1021/ja0537373. - DOI - PubMed
    8. Hamashima Y.; Sasamoto N.; Hotta D.; Somei H.; Umebayashi N.; Sodeoka M. Catalytic Asymmetric Addition of β-Ketoesters to Various Imines by Using Chiral Palladium Complexes. Anew. Chem., Int. Ed. 2005, 44, 1525–1529. 10.1002/anie.200462202. - DOI - PubMed
    1. Cai M.; Xu K.; Li Y.; Nie Z.; Zhang L.; Luo S. Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide. J. Am. Chem. Soc. 2021, 143, 1078–1087. 10.1021/jacs.0c11787. - DOI - PubMed
    2. Zhu Y.; Zhang L.; Luo S. Asymmetric α-Photoalkylation of β-Ketocarbonyls by Primary Amine Catalysis: Facile Access to Acyclic All-Carbon Quaternary Stereocenters. J. Am. Chem. Soc. 2014, 136, 14642–14645. 10.1021/ja508605a. - DOI - PubMed
    3. Malerich J. P.; Hagihara K.; Rawal V. H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2008, 130, 14416–14417. 10.1021/ja805693p. - DOI - PMC - PubMed
    1. Griggs S. D.; Thompson N.; Tape D. T.; Fabre M.; Clarke P. A. A Two-Step Synthesis of 2-Spiropiperidines. Chem. Eur. J. 2017, 23, 9262–9265. 10.1002/chem.201702467. - DOI - PubMed
    2. Ghorai M. K.; Kumar A.; Halder S. Regioselective Addition of 1,3-Dicarbonyl Dianion to N-Sulfonyl Aldimines: an Expedient Route to N-Sulfonyl Piperidines and N-Sulfonyl Azetidines. Tetrahedron 2007, 63, 4779–4787. 10.1016/j.tet.2007.03.081. - DOI
    1. Denmark S. E.; Heemstra J. R.; Beutner G. L. Catalytic, Enantioselective, Vinylogous Aldol Reactions. Angew. Chem,. Int. Ed. 2005, 44, 4682–4698. 10.1002/anie.200462338. - DOI - PubMed
    2. Wang Q.; Gemmeren M.; List B. Asymmetric Disulfonimide-Catalyzed Synthesis of δ-Amino-β-Ketoester Derivatives by Vinylogous Mukaiyama–Mannich Reactions. Angew. Chem., Int. Ed. 2014, 53, 13592–13595. 10.1002/anie.201407532. - DOI - PubMed
    3. Wang Q.; List B. Disulfonimide-Catalyzed Asymmetric Synthesis of δ-Amino-β-Keto Esters. Synlett 2015, 26, 807–809. 10.1055/s-0034-1379999. - DOI
    4. Singer R. A.; Carreira E. M. Catalytic, Enantioselective Dienolate Additions to Aldehydes: Preparation of Optically Active Acetoacetate Aldol Adducts. J. Am. Chem. Soc. 1995, 117, 12360–12361. 10.1021/ja00154a049. - DOI