Metformin encapsulated gold nanoparticles (MTF-GNPs): A promising antiglycation agent
- PMID: 36098489
- DOI: 10.1002/cbf.3738
Metformin encapsulated gold nanoparticles (MTF-GNPs): A promising antiglycation agent
Abstract
The generation of advanced glycation end products (AGEs) through nonenzymatic protein glycation contributes to the pathogenesis of long-lived diabetic problems. Metformin (MTF) is the very first drug having antihyperglycemic effects on type II diabetes mellitus which also possess interaction with dicarbonyl compounds and blocks the formation of AGEs. In the current study, MTF is bioconjugated with glycation-derived synthesized gold nanoparticles (GNPs) of significant size. Additionally, using various biophysical and biochemical approaches, we investigated the antiglycating capacity MTF-GNPs in contrast to MTF against d-ribose-derived glycation of bovine serum albumin. Our key findings via utilizing various assays demonstrated that MTF-GNPs were able to inhibit AGEs development by reducing hyperchromicity, early glycation products, carbonyl content, hydxoxymethylfurfural content, production of fluorescent AGEs, normalizing the loss of secondary structure (i.e., α-helix and β-sheets) of proteins, elevating the levels of free lysine and free arginine more efficiently compared to pure MTF. Based on these results, we concluded that MTF-GNPs possess a considerable antiglycation property and may be developed as an outstanding anti-AGEs treatment drug. Further in vivo and clinical research are necessary to determine the therapeutic effects of MTF-GNPs against AGE-related and metabolic disorders.
Keywords: Metformin; fluorescence; hydroxy methyl furfural; nitrobluetetrazolium; transmission electron microscopy.
© 2022 John Wiley & Sons Ltd.
References
REFERENCES
-
- Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5-18.
-
- Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med. 2015;6(3):120-127.
-
- Barathmanikanth S, Kalishwaralal K, Sriram M, et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnology. 2010;8(1):16.
-
- Kashihara N, Haruna Y, Kondeti VK, S Kanwar, Y. Oxidative stress in diabetic nephropathy. Curr Med Chem. 2010;17(34):4256-4269.
-
- Afifi M, Abdelazim AM. Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant system in the brain of diabetic rats. Asian Pac J Trop Biomed. 2015;5(10):874-877.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
