Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov:321:198927.
doi: 10.1016/j.virusres.2022.198927. Epub 2022 Sep 11.

1 Cellular protein TTC4 and its cofactor HSP90 are pro-viral for bovine herpesvirus 1

Affiliations
Free article

1 Cellular protein TTC4 and its cofactor HSP90 are pro-viral for bovine herpesvirus 1

Beth H Thompson et al. Virus Res. 2022 Nov.
Free article

Abstract

Bovine Herpesvirus Type 1 (BoHV-1) infection causes infectious bovine rhinotracheitis and genital disease in cattle, with significant economic and welfare impacts. However, the role of cellular host factors during viral replication remains poorly characterised. A previously performed genome-wide CRISPR knockout screen identified pro- and antiviral host factors acting during BoHV-1 replication. Herein we validate a pro-viral role for a candidate from this screen: the cellular protein tetracopeptide repeat protein 4 (TTC4). We show that TTC4 transcript production is upregulated during BoHV-1 infection. Depletion of TTC4 protein impairs BoHV-1 protein production but does not reduce production of infectious virions, whereas overexpression of exogenous TTC4 results in a significant increase in production of infectious BoHV-1 virions. TTC4 itself is poorly characterized (especially in the context of virus infection), but is a known co-chaperone of heat shock protein 90 (HSP90). HSP90 has a well-characterized pro-viral role during the replication of diverse herpesviruses, and we therefore hypothesized that HSP90 is also pro-viral for BoHV-1. Drug-mediated inhibition of HSP90 using geldanamycin at sub-cytotoxic concentrations inhibited both BoHV-1 protein production and viral genome replication, indicating a pro-viral role for HSP90 during BoHV-1 infection. Our data demonstrates pro-viral roles for both TTC4 and HSP90 during BoHV-1 replication; possibly, interactions between these two proteins are required for optimal BoHV-1 replication, or the two proteins may have independent pro-viral roles.

Keywords: Bovine herpesvirus 1; Geldanamycin; Heat shock protein 90 (HSP90); Tetracopeptide repeat protein 4 (TTC4).

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest None declared.

Publication types

MeSH terms

LinkOut - more resources