Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 13;6(9):684-692.
doi: 10.4049/immunohorizons.2200056.

MARCH1 Controls an Exhaustion-like Program of Effector CD4+ T Cells Promoting Allergic Airway Inflammation

Affiliations
Free article

MARCH1 Controls an Exhaustion-like Program of Effector CD4+ T Cells Promoting Allergic Airway Inflammation

Carlos A Castellanos et al. Immunohorizons. .
Free article

Abstract

Persistent antigenic signaling leads to T cell exhaustion, a dysfunctional state arising in many chronic infections and cancers. Little is known concerning mechanisms limiting exhaustion in immune-stimulatory diseases such as asthma. We report that membrane-associated RING-CH1 (MARCH1), the ubiquitin ligase that mediates surface turnover of MHC class II (MHCII) and CD86 in professional APCs, plays an essential role in restraining an exhaustion-like program of effector CD4+ T cells in a mouse model of asthma. Mice lacking MARCH1 or the ubiquitin acceptor sites of MHCII and CD86 exhibited increased MHCII and CD86 surface expression on lung APCs, and this increase promoted enhanced expression of immune-inhibitory receptors by effector CD4+ T cells and inhibited their proliferation. Remarkably, ablation of MARCH1 in mice with established asthma reduced airway infiltration of eosinophils and Th2 cells. Thus, MARCH1 controls an exhaustion-like program of effector CD4+ T cells during allergic airway inflammation and may serve as a therapeutic target for asthma.

PubMed Disclaimer