Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 13;23(1):311.
doi: 10.1186/s12882-022-02937-x.

Absence of long-term changes in urine biomarkers after AKI: findings from the CRIC study

Affiliations

Absence of long-term changes in urine biomarkers after AKI: findings from the CRIC study

Ian E McCoy et al. BMC Nephrol. .

Abstract

Background: Mechanisms by which AKI leads to CKD progression remain unclear. Several urine biomarkers have been identified as independent predictors of progressive CKD. It is unknown whether AKI may result in long-term changes in these urine biomarkers, which may mediate the effect of AKI on CKD progression.

Methods: We selected 198 episodes of hospitalized AKI (defined as peak/nadir inpatient serum creatinine values ≥ 1.5) among adult participants in the Chronic Renal Insufficiency Cohort (CRIC) Study. We matched the best non-AKI hospitalization (unique patients) for each AKI hospitalization using pre-hospitalization characteristics including eGFR and urine protein/creatinine ratio. Biomarkers were measured in banked urine samples collected at annual CRIC study visits.

Results: Urine biomarker measurements occurred a median of 7 months before and 5 months after hospitalization. There were no significant differences in the change in urine biomarker-to-creatinine ratio between the AKI and non-AKI groups: KIM-1/Cr + 9% vs + 7%, MCP-1/Cr + 4% vs + 1%, YKL-40/Cr + 7% vs -20%, EGF/Cr -11% vs -8%, UMOD/Cr -2% vs -7% and albumin/Cr + 17% vs + 13% (all p > 0.05).

Conclusion: In this cohort of adults with CKD, AKI did not associate with long-term changes in urine biomarkers.

Keywords: Acute kidney injury; Biomarkers; Chronic kidney disease.

PubMed Disclaimer

Conflict of interest statement

None of the authors declare disclosures of direct relevance to the submitted work.

Figures

Fig. 1
Fig. 1
Post-hospitalization changes in eGFR. Legend: Each faded line shows the eGFR measurements for an individual patient. The bright lines show non-parametric smooth eGFR trajectories for each group. P value from linear mixed effects model

References

    1. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. World incidence of AKI: A meta-analysis. Clin J Am Soc Nephrol. 2013;8(9):1482–1493. doi: 10.2215/CJN.00710113. - DOI - PMC - PubMed
    1. Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA. Clinical Decision Support for In-Hospital AKI. J Am Soc Nephrol. 2018;29(2):654–660. doi: 10.1681/ASN.2017070765. - DOI - PMC - PubMed
    1. Heung M, Steffick DE, Zivin K, Gillespie BW, Banerjee T, Hsu CY, et al. Acute Kidney Injury Recovery Pattern and Subsequent Risk of CKD: An Analysis of Veterans Health Administration Data. Am J Kidney Dis. 2016;67(5):742–752. doi: 10.1053/j.ajkd.2015.10.019. - DOI - PMC - PubMed
    1. Hsu CY, Chertow GM, McCulloch CE, Fan D, Ordoñez JD, Go AS. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin J Am Soc Nephrol. 2009;4(5):891–898. doi: 10.2215/CJN.05571008. - DOI - PMC - PubMed
    1. Lo LJ, Go AS, Chertow GM, McCulloch CE, Fan D, Ordõez JD, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76(8):893–899. doi: 10.1038/ki.2009.289. - DOI - PMC - PubMed

Publication types