Antimicrobial Resistance in Aquaculture Environments: Unravelling the Complexity and Connectivity of the Underlying Societal Drivers
- PMID: 36102785
- PMCID: PMC9631993
- DOI: 10.1021/acs.est.2c00799
Antimicrobial Resistance in Aquaculture Environments: Unravelling the Complexity and Connectivity of the Underlying Societal Drivers
Abstract
Food production environments in low- and middle-income countries (LMICs) are recognized as posing significant and increasing risks to antimicrobial resistance (AMR), one of the greatest threats to global public health and food security systems. In order to maximize and expedite action in mitigating AMR, the World Bank and AMR Global Leaders Group have recommended that AMR is integrated into wider sustainable development strategies. Thus, there is an urgent need for tools to support decision makers in unravelling the complex social and environmental factors driving AMR in LMIC food-producing environments and in demonstrating meaningful connectivity with other sustainable development issues. Here, we applied the Driver-Pressure-State-Impact-Response (DPSIR) conceptual framework to an aquaculture case study site in rural Bangladesh, through the analysis of distinct social, microbiological, and metagenomic data sets. We show how the DPSIR framework supports the integration of these diverse data sets, first to systematically characterize the complex network of societal drivers of AMR in these environments and second to delineate the connectivity between AMR and wider sustainable development issues. Our study illustrates the complexity and challenges of addressing AMR in rural aquaculture environments and supports efforts to implement global policy aimed at mitigating AMR in aquaculture and other rural LMIC food-producing environments.
Keywords: Antimicrobial resistance; DPSIR; LMIC; antibiotic; aquaculture; environment; food production; framework.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Raising awareness of antimicrobial resistance in rural aquaculture practice in Bangladesh through digital communications: a pilot study.Glob Health Action. 2019;12(sup1):1734735. doi: 10.1080/16549716.2020.1734735. Glob Health Action. 2019. PMID: 32153258 Free PMC article.
-
Unravelling the menace: detection of antimicrobial resistance in aquaculture.Lett Appl Microbiol. 2020 Jul;71(1):26-38. doi: 10.1111/lam.13292. Epub 2020 Apr 22. Lett Appl Microbiol. 2020. PMID: 32248555 Review.
-
Prevalence of opportunistic pathogens and anti-microbial resistance in urban aquaculture ponds.J Hazard Mater. 2024 Aug 5;474:134661. doi: 10.1016/j.jhazmat.2024.134661. Epub 2024 May 20. J Hazard Mater. 2024. PMID: 38815393
-
Aquaculture at the crossroads of global warming and antimicrobial resistance.Nat Commun. 2020 Apr 20;11(1):1870. doi: 10.1038/s41467-020-15735-6. Nat Commun. 2020. PMID: 32312964 Free PMC article.
-
Antimicrobial resistance in aquaculture: Occurrence and strategies in Southeast Asia.Sci Total Environ. 2024 Jan 10;907:167942. doi: 10.1016/j.scitotenv.2023.167942. Epub 2023 Oct 18. Sci Total Environ. 2024. PMID: 37863226 Review.
Cited by
-
Integrated water quality dynamics in Wadi Hanifah: Physical, chemical, and biological perspectives.PLoS One. 2024 Feb 15;19(2):e0298200. doi: 10.1371/journal.pone.0298200. eCollection 2024. PLoS One. 2024. PMID: 38358999 Free PMC article.
-
Occurrence of Antibiotic-Resistant Bacteria in Urban Surface Water Sources in Bangladesh.Curr Microbiol. 2025 Jan 20;82(2):96. doi: 10.1007/s00284-025-04082-8. Curr Microbiol. 2025. PMID: 39833477
-
Mapping socioeconomic factors driving antimicrobial resistance in humans: An umbrella review.One Health. 2025 Feb 10;20:100986. doi: 10.1016/j.onehlt.2025.100986. eCollection 2025 Jun. One Health. 2025. PMID: 40027924 Free PMC article. Review.
-
Subsidized veterinary extension services may reduce antimicrobial resistance in aquaculture.Sci Rep. 2023 Jun 21;13(1):10118. doi: 10.1038/s41598-023-37262-2. Sci Rep. 2023. PMID: 37344659 Free PMC article.
-
Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures.Micromachines (Basel). 2024 Jun 4;15(6):755. doi: 10.3390/mi15060755. Micromachines (Basel). 2024. PMID: 38930725 Free PMC article.
References
-
- The Future of Food and Agriculture - Trends and Challenges; FAO: Rome, 2017.
-
- Antimicrobial Resistance and the United Nations Sustainable Development Cooperation Framework: Guidance for United Nations Country Teams; Food and Agriculture Organization of the United Nations, World Organisation for Animal Health, World Health Organization, 2021.
-
- Murray C. J.; Ikuta K. S.; Sharara F.; Swetschinski L.; Robles Aguilar G.; Gray A.; Han C.; Bisignano C.; Rao P.; Wool E.; Johnson S. C.; Browne A. J.; Chipeta M. G.; Fell F.; Hackett S.; Haines-Woodhouse G.; Kashef Hamadani B. H.; Kumaran E. A. P.; McManigal B.; Agarwal R.; Akech S.; Albertson S.; Amuasi J.; Andrews J.; Aravkin A.; Ashley E.; Bailey F.; Baker S.; Basnyat B.; Bekker A.; Bender R.; Bethou A.; Bielicki J.; Boonkasidecha S.; Bukosia J.; Carvalheiro C.; Castañeda-Orjuela C.; Chansamouth V.; Chaurasia S.; Chiurchiù S.; Chowdhury F.; Cook A. J.; Cooper B.; Cressey T. R.; Criollo-Mora E.; Cunningham M.; Darboe S.; Day N. P. J.; De Luca M.; Dokova K.; Dramowski A.; Dunachie S. J.; Eckmanns T.; Eibach D.; Emami A.; Feasey N.; Fisher-Pearson N.; Forrest K.; Garrett D.; Gastmeier P.; Giref A. Z.; Greer R. C.; Gupta V.; Haller S.; Haselbeck A.; Hay S. I.; Holm M.; Hopkins S.; Iregbu K. C.; Jacobs J.; Jarovsky D.; Javanmardi F.; Khorana M.; Kissoon N.; Kobeissi E.; Kostyanev T.; Krapp F.; Krumkamp R.; Kumar A.; Kyu H. H.; Lim C.; Limmathurotsakul D.; Loftus M. J.; Lunn M.; Ma J.; Mturi N.; Munera-Huertas T.; Musicha P.; Mussi-Pinhata M. M.; Nakamura T.; Nanavati R.; Nangia S.; Newton P.; Ngoun C.; Novotney A.; Nwakanma D.; Obiero C. W.; Olivas-Martinez A.; Olliaro P.; Ooko E.; Ortiz-Brizuela E.; Peleg A. Y.; Perrone C.; Plakkal N.; Ponce-de-Leon A.; Raad M.; Ramdin T.; Riddell A.; Roberts T.; Robotham J. V.; Roca A.; Rudd K. E.; Russell N.; Schnall J.; Scott J. A. G.; Shivamallappa M.; Sifuentes-Osornio J.; Steenkeste N.; Stewardson A. J.; Stoeva T.; Tasak N.; Thaiprakong A.; Thwaites G.; Turner C.; Turner P.; van Doorn H. R.; Velaphi S.; Vongpradith A.; Vu H.; Walsh T.; Waner S.; Wangrangsimakul T.; Wozniak T.; Zheng P.; Sartorius B.; Lopez A. D.; Stergachis A.; Moore C.; Dolecek C.; Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399, 629–655. 10.1016/S0140-6736(21)02724-0. - DOI - PMC - PubMed
-
- Global Action Plan on Antimicrobial Resistance; World Health Organization, 2015. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical