Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep;609(7927):485-489.
doi: 10.1038/s41586-022-05123-z. Epub 2022 Sep 14.

Extended Bose-Hubbard model with dipolar excitons

Affiliations

Extended Bose-Hubbard model with dipolar excitons

C Lagoin et al. Nature. 2022 Sep.

Abstract

The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials1,2. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions3-6. However, accessing longer-range couplings has remained elusive experimentally7. This marks the frontier towards the extended Bose-Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings8-12. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose-Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.

PubMed Disclaimer

Comment in

References

    1. Salomon, C. et al. Many-Body Physics with Ultracold Gases: Lecture Notes of the Les Houches Summer School: Volume 94, July 2010 (Oxford Univ. Press, 2012).
    1. Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The Hubbard model. Ann. Rev. Condens. Matter Phys. 13, 239–274 (2022). - DOI
    1. Greiner, M., Mandel, O., Esslinger, T., Haensch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002). - DOI
    1. Gemelke, N., Zhang, X., Hung, C. L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009). - DOI
    1. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010). - DOI

Publication types

LinkOut - more resources