Artificial microbial consortium producing oxidases enhanced the biotransformation efficiencies of multi-antibiotics
- PMID: 36104903
- DOI: 10.1016/j.jhazmat.2022.129674
Artificial microbial consortium producing oxidases enhanced the biotransformation efficiencies of multi-antibiotics
Abstract
Antibiotic mixtures in the environment result in the development of bacterial strains with resistance against multiple antibiotics. Oxidases are versatile that can bio-remove antibiotics. Various laccases (LACs), manganese peroxidases (MNPs), and versatile peroxidase (VP) were reconstructed in Pichia pastoris. For the single antibiotics, over 95.0% sulfamethoxazole within 48 h, tetracycline, oxytetracycline, and norfloxacin within 96 h were bio-removed by recombinant VP with α-signal peptide, respectively. In a mixture of the four antibiotics, 80.2% tetracycline and 95.6% oxytetracycline were bio-removed by recombinant MNP2 with native signal peptide (NSP) within 8 h, whereas < 80.0% sulfamethoxazole was bio-removed within 72 h, indicating that signal peptides significantly impacted removal efficiencies of antibiotic mixtures. Regarding mediators for LACs, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) resulted in better removal efficiencies of multi-antibiotic mixtures than 1-hydroxybenzotriazole or syringaldehyde. Furthermore, artificial microbial consortia (AMC) producing LAC2 and MNP2 with NSP significantly improved bio-removal efficiency of sulfamethoxazole (95.5%) in four-antibiotic mixtures within 48 h. Tetracycline and oxytetracycline were completely bio-removed by AMC within 48 and 72 h, respectively, indicating that AMC accelerated sulfamethoxazole, tetracycline, and oxytetracycline bio-removals. Additionally, transformation pathways of each antibiotic by recombinant oxidases were proposed. Taken together, this work provides a new strategy to simultaneously remove antibiotic mixtures by AMC.
Keywords: Antibiotics mixture; Bio-removal; Co-culture; Laccase; Peroxidase.
Copyright © 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.