In-Reservoir Physical Processes Modulate Aqueous and Biological Methylmercury Export from a Seasonally Anoxic Reservoir
- PMID: 36107858
- PMCID: PMC9535939
- DOI: 10.1021/acs.est.2c03958
In-Reservoir Physical Processes Modulate Aqueous and Biological Methylmercury Export from a Seasonally Anoxic Reservoir
Abstract
Anoxic conditions within reservoirs related to thermal stratification and oxygen depletion lead to methylmercury (MeHg) production, a key process governing the uptake of mercury in aquatic food webs. Once formed within a reservoir, the timing and magnitude of the biological uptake of MeHg and the relative importance of MeHg export in water versus biological compartments remain poorly understood. We examined the relations between the reservoir stratification state, anoxia, and the concentrations and export loads of MeHg in aqueous and biological compartments at the outflow locations of two reservoirs of the Hells Canyon Complex (Snake River, Idaho-Oregon). Results show that (1) MeHg concentrations in filter-passing water, zooplankton, suspended particles, and detritus increased in response to reservoir destratification; (2) zooplankton MeHg strongly correlated with MeHg in filter-passing water during destratification; (3) reservoir anoxia appeared to be a key control on MeHg export; and (4) biological MeHg, primarily in zooplankton, accounted for only 5% of total MeHg export from the reservoirs (the remainder being aqueous compartments). These results improve our understanding of the role of biological incorporation of MeHg and the subsequent downstream release from seasonally stratified reservoirs and demonstrate that in-reservoir physical processes strongly influence MeHg incorporation at the base of the aquatic food web.
Keywords: anoxia; aquatic food web; bioaccumulation; biological uptake; destratification; methylation; suspended sediment; zooplankton.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






References
-
- Louis St. V.; Kelly C. A.; Duchemin É.; Rudd J. W. M.; Rosenberg D. M. Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate: Reservoirs Are Sources of Greenhouse Gases to the Atmosphere, and Their Surface Areas Have Increased to the Point Where They Should Be Included in Global Inventories of Anthropogenic Emissions of Greenhouse Gases. BioScience 2000, 50, 766–775. 10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2. - DOI
-
- Zarfl C.; Lumsdon A. E.; Berlekamp J.; Tydecks L.; Tockner K. A Global Boom in Hydropower Dam Construction. Aquat Sci 2015, 77, 161–170. 10.1007/s00027-014-0377-0. - DOI
-
- Bohada-Murillo M.; Castaño-Villa G. J.; Fontúrbel F. E. Effects of Dams on Vertebrate Diversity: A Global Analysis. Diversity 2021, 13, 528.10.3390/d13110528. - DOI
-
- Ekka A.; Pande S.; Jiang Y.; der Zaag P. Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective. Water (Switz.)) 2020, 12, 2706.10.3390/w12102706. - DOI
-
- Jane S. F.; Hansen G. J. A.; Kraemer B. M.; Leavitt P. R.; Mincer J. L.; North R. L.; Pilla R. M.; Stetler J. T.; Williamson C. E.; Woolway R. I.; Arvola L.; Chandra S.; DeGasperi C. L.; Diemer L.; Dunalska J.; Erina O.; Flaim G.; Grossart H.-P.; Hambright K. D.; Hein C.; Hejzlar J.; Janus L. L.; Jenny J.-P.; Jones J. R.; Knoll L. B.; Leoni B.; Mackay E.; Matsuzaki S.-I. S.; McBride C.; Müller-Navarra D. C.; Paterson A. M.; Pierson D.; Rogora M.; Rusak J. A.; Sadro S.; Saulnier-Talbot E.; Schmid M.; Sommaruga R.; Thiery W.; Verburg P.; Weathers K. C.; Weyhenmeyer G. A.; Yokota K.; Rose K. C. Widespread Deoxygenation of Temperate Lakes. Nature 2021, 594, 66–70. 10.1038/s41586-021-03550-y. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources