Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug;106(2-1):024115.
doi: 10.1103/PhysRevE.106.024115.

Steepest entropy ascent solution for a continuous-time quantum walker

Affiliations

Steepest entropy ascent solution for a continuous-time quantum walker

Rohit Kishan Ray. Phys Rev E. 2022 Aug.

Abstract

We consider the steepest entropy ascent (SEA) ansatz to describe the nonlinear thermodynamic evolution of a quantum system. Recently this principle has been dubbed the fourth law of thermodynamics [Beretta, Phil. Trans. R. Soc. A 378, 20190168 (2020)10.1098/rsta.2019.0168]. A unique global equilibrium state exists in this context, and any other state is driven by the maximum entropy generation principle towards this equilibrium. We study the SEA evolution of a continuous-time quantum walker (CTQW) on a cycle graph with N nodes. SEA solutions are difficult to find analytically. We provide an approximate scheme to find a general single-particle evolution equation governed by the SEA principle, whose solution produces dissipation dynamics. We call this scheme the fixed Lagrange's multiplier (FLM) method. In the Bloch sphere representation, we find trajectories traced out by the Bloch vector within the sphere itself. We have discussed these trajectories under various initial conditions for the case of a qubit. A similar dissipative motion is also observed in the case of CTQW, where probability amplitudes have been used to characterize decoherence. Our FLM scheme shows good agreement with numerical results. As we report, in CTQW, a strong delocalization exists for low system relaxation time.

PubMed Disclaimer

LinkOut - more resources