Extending outbreak investigation with machine learning and graph theory: Benefits of new tools with application to a nosocomial outbreak of a multidrug-resistant organism
- PMID: 36111457
- PMCID: PMC9929710
- DOI: 10.1017/ice.2022.66
Extending outbreak investigation with machine learning and graph theory: Benefits of new tools with application to a nosocomial outbreak of a multidrug-resistant organism
Abstract
Objective: From January 1, 2018, until July 31, 2020, our hospital network experienced an outbreak of vancomycin-resistant enterococci (VRE). The goal of our study was to improve existing processes by applying machine-learning and graph-theoretical methods to a nosocomial outbreak investigation.
Methods: We assembled medical records generated during the first 2 years of the outbreak period (January 2018 through December 2019). We identified risk factors for VRE colonization using standard statistical methods, and we extended these with a decision-tree machine-learning approach. We then elicited possible transmission pathways by detecting commonalities between VRE cases using a graph theoretical network analysis approach.
Results: We compared 560 VRE patients to 86,684 controls. Logistic models revealed predictors of VRE colonization as age (aOR, 1.4 (per 10 years), with 95% confidence interval [CI], 1.3-1.5; P < .001), ICU admission during stay (aOR, 1.5; 95% CI, 1.2-1.9; P < .001), Charlson comorbidity score (aOR, 1.1; 95% CI, 1.1-1.2; P < .001), the number of different prescribed antibiotics (aOR, 1.6; 95% CI, 1.5-1.7; P < .001), and the number of rooms the patient stayed in during their hospitalization(s) (aOR, 1.1; 95% CI, 1.1-1.2; P < .001). The decision-tree machine-learning method confirmed these findings. Graph network analysis established 3 main pathways by which the VRE cases were connected: healthcare personnel, medical devices, and patient rooms.
Conclusions: We identified risk factors for being a VRE carrier, along with 3 important links with VRE (healthcare personnel, medical devices, patient rooms). Data science is likely to provide a better understanding of outbreaks, but interpretations require data maturity, and potential confounding factors must be considered.
Figures


References
-
- Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol 2019;188:2222–2239. - PubMed
-
- Roth JA, Battegay M, Juchler F, Vogt JE, Widmer AF. Introduction to machine learning in digital healthcare epidemiology. Infect Control Hosp Epidemiol 2018;39:1457–1462. - PubMed
-
- Luz CF, Vollmer M, Decruyenaere J, Nijsten MW, Glasner C, Sinha B. Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies. Clin Microbiol Infect 2020;26:1291–1299. - PubMed