Shallow shotgun sequencing of the microbiome recapitulates 16S amplicon results and provides functional insights
- PMID: 36112078
- DOI: 10.1111/1755-0998.13713
Shallow shotgun sequencing of the microbiome recapitulates 16S amplicon results and provides functional insights
Abstract
Prevailing 16S rRNA gene-amplicon methods for characterizing the bacterial microbiome of wildlife are economical, but result in coarse taxonomic classifications, are subject to primer and 16S copy number biases, and do not allow for direct estimation of microbiome functional potential. While deep shotgun metagenomic sequencing can overcome many of these limitations, it is prohibitively expensive for large sample sets. Here we evaluated the ability of shallow shotgun metagenomic sequencing to characterize taxonomic and functional patterns in the faecal microbiome of a model population of feral horses (Sable Island, Canada). Since 2007, this unmanaged population has been the subject of an individual-based, long-term ecological study. Using deep shotgun metagenomic sequencing, we determined the sequencing depth required to accurately characterize the horse microbiome. In comparing conventional vs. high-throughput shotgun metagenomic library preparation techniques, we validate the use of more cost-effective laboratory methods. Finally, we characterize similarities between 16S amplicon and shallow shotgun characterization of the microbiome, and demonstrate that the latter recapitulates biological patterns first described in a published amplicon data set. Unlike for amplicon data, we further demonstrate how shallow shotgun metagenomic data provide useful insights regarding microbiome functional potential which support previously hypothesized diet effects in this study system.
Keywords: diet effects; horse; metagenomic sequencing; wildlife.
© 2022 John Wiley & Sons Ltd.
Similar articles
-
Evaluating the Information Content of Shallow Shotgun Metagenomics.mSystems. 2018 Nov 13;3(6):e00069-18. doi: 10.1128/mSystems.00069-18. eCollection 2018 Nov-Dec. mSystems. 2018. PMID: 30443602 Free PMC article.
-
Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome.OMICS. 2018 Apr;22(4):248-254. doi: 10.1089/omi.2018.0013. OMICS. 2018. PMID: 29652573
-
Comprehensive evaluation of shotgun metagenomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies.Cell Rep Methods. 2023 Jan 23;3(1):100391. doi: 10.1016/j.crmeth.2022.100391. eCollection 2023 Jan 23. Cell Rep Methods. 2023. PMID: 36814836 Free PMC article.
-
Current challenges and best-practice protocols for microbiome analysis.Brief Bioinform. 2021 Jan 18;22(1):178-193. doi: 10.1093/bib/bbz155. Brief Bioinform. 2021. PMID: 31848574 Free PMC article. Review.
-
Next-generation sequencing: insights to advance clinical investigations of the microbiome.J Clin Invest. 2022 Apr 1;132(7):e154944. doi: 10.1172/JCI154944. J Clin Invest. 2022. PMID: 35362479 Free PMC article. Review.
Cited by
-
Microbiome diversity of low biomass skin sites is captured by metagenomics but not 16S amplicon sequencing.bioRxiv [Preprint]. 2025 Jun 24:2025.06.24.661265. doi: 10.1101/2025.06.24.661265. bioRxiv. 2025. PMID: 40666980 Free PMC article. Preprint.
-
Multi-omic approaches for host-microbiome data integration.Gut Microbes. 2024 Jan-Dec;16(1):2297860. doi: 10.1080/19490976.2023.2297860. Epub 2024 Jan 2. Gut Microbes. 2024. PMID: 38166610 Free PMC article. Review.
-
Metagenomic insights into jellyfish-associated microbiome dynamics during strobilation.ISME Commun. 2024 Mar 15;4(1):ycae036. doi: 10.1093/ismeco/ycae036. eCollection 2024 Jan. ISME Commun. 2024. PMID: 38571744 Free PMC article.
-
Long-read metagenomics gives a more accurate insight into the microbiota of long-ripened gouda cheeses.Front Microbiol. 2025 Mar 24;16:1543079. doi: 10.3389/fmicb.2025.1543079. eCollection 2025. Front Microbiol. 2025. PMID: 40196035 Free PMC article.
-
Population Dynamics and the Microbiome in a Wild Boreal Mammal: The Snowshoe Hare Cycle and Impacts of Diet, Season and Predation Risk.Mol Ecol. 2025 Feb;34(3):e17629. doi: 10.1111/mec.17629. Epub 2024 Dec 19. Mol Ecol. 2025. PMID: 39698753 Free PMC article.
References
REFERENCES
-
- Armour, C. R., Topçuoğlu, B. D., Garretto, A., & Schloss, P. D. (2022). A goldilocks principle for the gut microbiome: Taxonomic resolution matters for microbiome-based classification of colorectal cancer. MBio, 13, e0316121. https://doi.org/10.1128/MBIO.03161-21
-
- Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A. M., Valles-Colomer, M., Weingart, G., Zhang, Y., Zolfo, M., Huttenhower, C., Franzosa, E. A., & Segata, N. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with biobakery 3. eLife, 10, e65088. https://doi.org/10.7554/eLife.65088
-
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
-
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). dada2: High-resolution sample inference from illumina amplicon data. Nature Methods, 13(7), 581-587. https://doi.org/10.1038/nMeth.3869
-
- Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E., Ong, W. K., Paley, S., Subhraveti, P., & Karp, P. D. (2019). The MetaCyc database of metabolic pathways and enzymes-a 2019 update. Nucleic Acids Research, 48, 445-453. https://doi.org/10.1093/nar/gkz862
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources