Nanomaterials-enriched sensors for detection of chiral pharmaceuticals
- PMID: 36115205
- DOI: 10.1016/j.jpba.2022.115031
Nanomaterials-enriched sensors for detection of chiral pharmaceuticals
Abstract
Advancements in nanoscience and nanotechnology have opened new pathways to fabricate novel nanostructures with interesting properties that would be used for different applications. In this respect, nanostructures comprising chirality are one of the most rapidly developing research fields encompassing chemistry, physics and biology. Chirality, also known as mirror asymmetry, describes the geometrical property of an object that is not superimposable on its mirror image. This characteristic plays a crucial role because these identical forms of chiral species in pharmaceuticals or food additives may exhibit different effects on living organisms. Therefore, chiral analysis is an important field of modern chemical analysis in health-related industries that are reliant on the production of enantiomeric compounds involving pharmaceuticals. This review covers the recent advances dealing with the synthesis, design and advantageous analytical performance of nanomaterials-enriched sensors used for chiral pharmaceuticals. We conclude this review with the challenges existing in this research field and our perspectives on some potential strategies with cutting-edge approaches for the rational design of sensors for chiral pharmaceuticals. We expect this comprehensive review will inspire future studies in nanomaterials-enriched chiral sensors.
Keywords: Chiral nanomaterials; Chiral pharmaceuticals; Chiral sensors; Enantioselectivity.
Copyright © 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
