Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 15:313:120189.
doi: 10.1016/j.envpol.2022.120189. Epub 2022 Sep 15.

Lichen transplants as indicators of gaseous elemental mercury concentrations

Affiliations

Lichen transplants as indicators of gaseous elemental mercury concentrations

Fabrizio Monaci et al. Environ Pollut. .

Abstract

Lichens play an important role in the biogeochemical cycling of mercury (Hg) and are commonly used as indicators of Hg enrichment in remote and anthropogenically impacted environments. To assess their capacity for Hg uptake and accumulation, we determined the concentration of gaseous elemental mercury (GEM) in air and the concentration of total Hg (THg) in transplanted thalli of two lichen species. Lichen transplants and passive air samplers (PASs) were concurrently deployed, side by side, at 10 sites within an abandoned mining area, characterized by large gradients in atmospheric Hg contamination. Highly variable time-weighted GEM concentrations determined by the PASs, ranging from 17 to 4,200 ng/m3, were mirrored by generally high Hg concentrations in transplanted thalli of both Xanthoria parietina (174-8,800 ng/g) and Evernia prunastri (143-5,500 ng/g). Hg concentrations in the two species co-varied linearly indicating about 60% greater Hg accumulation in X. parietina than in E. prunastri. Whereas Hg uptake in the fruticose E. prunastri increased linearly with GEM, a power law equation with a fractional exponent described the uptake in the foliose X. parietina. Extrapolating the relationships observed here to higher GEM levels yielded concentrations in lichen that agree very well with those measured in an earlier fumigation experiment performed under laboratory-controlled conditions. The uptake model of X. parietina was further verified by correctly estimating GEM concentrations from the THg measured in autochthonous thalli collected from the urban area adjacent to the mine site. Passive sampling can effectively provide time-weighted data of suitable spatial resolution to quantitatively describe GEM assimilation by lichens. Therefore, the combined use of passive sampling and lichen transplants can contribute to a more comprehensive understanding of the role of lichens, and potentially also of other cryptogams, in the deposition of atmospheric Hg to terrestrial ecosystems.

Keywords: Biomonitoring; Mercury uptake; Mining; Passive sampling; Terrestrial ecosystems.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources