Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation
- PMID: 36124303
- PMCID: PMC9481942
- DOI: 10.1016/j.patter.2022.100586
Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation
Abstract
Hao et al. (2022) present DTox (deep learning for toxicology), a neural network designed to predict and probe the sites and potential mechanisms underlying chemical toxicity; results provide a map to facilitate modular testing and improvements across multiple disparate applications.
© 2022 The Authors.
Conflict of interest statement
M.J.S. and B.S.K. have a filed US patent application related to Sniatynski et al. (2022). The patent is not directly related to Hao et al., but the two may be useful in tandem.
Similar articles
-
Knowledge-guided deep learning models of drug toxicity improve interpretation.Patterns (N Y). 2022 Aug 24;3(9):100565. doi: 10.1016/j.patter.2022.100565. eCollection 2022 Sep 9. Patterns (N Y). 2022. PMID: 36124309 Free PMC article.
-
DTox: A deep neural network-based in visio lens for large scale toxicogenomics data.J Toxicol Sci. 2024;49(3):105-115. doi: 10.2131/jts.49.105. J Toxicol Sci. 2024. PMID: 38432953
-
Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):197-217. doi: 10.1080/10937404.2010.483935. J Toxicol Environ Health B Crit Rev. 2010. PMID: 20574897
-
Advancing Computational Toxicology by Interpretable Machine Learning.Environ Sci Technol. 2023 Nov 21;57(46):17690-17706. doi: 10.1021/acs.est.3c00653. Epub 2023 May 24. Environ Sci Technol. 2023. PMID: 37224004 Free PMC article. Review.
-
A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies.Chem Res Toxicol. 2023 Aug 21;36(8):1174-1205. doi: 10.1021/acs.chemrestox.2c00375. Epub 2023 Aug 10. Chem Res Toxicol. 2023. PMID: 37561655 Review.
References
-
- Ribeiro M.T., Singh S., Guestrin C. Association for Computing Machinery; 2016. Why should i trust you? Explaining the predictions of any classifier; pp. 1135–1144. (Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16)). - DOI
-
- Lundberg S.M., Lee S.-I. In: Guyon I., Von Luxburg U., Bengio S., Wallach H., Fergus R., Vishwanathan S., Garnett R., editors. Vol. 30. 2017. A unified approach to interpreting model predictions; pp. 4765–4774. (Proceedings of Advances in Neural Information Processing Systems).
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources