Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Aug 10;19(11):11409-11421.
doi: 10.3934/mbe.2022532.

Logistic regression and artificial neural network-based simple predicting models for obstructive sleep apnea by age, sex, and body mass index

Affiliations
Free article
Randomized Controlled Trial

Logistic regression and artificial neural network-based simple predicting models for obstructive sleep apnea by age, sex, and body mass index

Yi-Chun Kuan et al. Math Biosci Eng. .
Free article

Abstract

Age, sex, and body mass index (BMI) were associated with obstructive sleep apnea (OSA). Although various methods have been used in OSA prediction, this study aimed to develop predictions using simple and general predictors incorporating machine learning algorithms. This single-center, retrospective observational study assessed the diagnostic relevance of age, sex, and BMI for OSA in a cohort of 9, 422 patients who had undergone polysomnography (PSG) between 2015 and 2020. The participants were randomly divided into training, testing, and independent validation groups. Multivariable logistic regression (LR) and artificial neural network (ANN) algorithms used age, sex, and BMI as predictors to develop risk-predicting models for moderate-and-severe OSA. The training-testing dataset was used to assess the model generalizability through five-fold cross-validation. We calculated the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the independent validation set to assess the performance of the model. The results showed that age, sex, and BMI were significantly associated with OSA. The validation AUCs of the generated LR and ANN models were 0.806 and 0.807, respectively. The independent validation set's accuracy, sensitivity, specificity, PPV, and NPV were 76.3%, 87.5%, 57.0%, 77.7%, and 72.7% for the LR model, and 76.4%, 87.7%, 56.9%, 77.7%, and 73.0% respectively, for the ANN model. The LR- and ANN-boosted models with the three simple parameters effectively predicted OSA in patients referred for PSG examination and improved insight into risk stratification for OSA diagnosis.

Keywords: OSA; age; artificial neural network; body mass index; logistic regression; machine learning; medical diagnosis; sex.

PubMed Disclaimer

Publication types