Destabilization of mutated human PUS3 protein causes intellectual disability
- PMID: 36125428
- PMCID: PMC10092196
- DOI: 10.1002/humu.24471
Destabilization of mutated human PUS3 protein causes intellectual disability
Abstract
Pseudouridine (Ψ) is an RNA base modification ubiquitously found in many types of RNAs. In humans, the isomerization of uridine is catalyzed by different stand-alone pseudouridine synthases (PUS). Genomic mutations in the human pseudouridine synthase 3 gene (PUS3) have been identified in patients with neurodevelopmental disorders. However, the underlying molecular mechanisms that cause the disease phenotypes remain elusive. Here, we utilize exome sequencing to identify genomic variants that lead to a homozygous amino acid substitution (p.[(Tyr71Cys)];[(Tyr71Cys)]) in human PUS3 of two affected individuals and a compound heterozygous substitution (p.[(Tyr71Cys)];[(Ile299Thr)]) in a third patient. We obtain wild-type and mutated full-length human recombinant PUS3 proteins and characterize the enzymatic activity in vitro. Unexpectedly, we find that the p.Tyr71Cys substitution neither affect tRNA binding nor pseudouridylation activity in vitro, but strongly impair the thermostability profile of PUS3, while the p.Ile299Thr mutation causes protein aggregation. Concomitantly, we observe that the PUS3 protein levels as well as the level of PUS3-dependent Ψ levels are strongly reduced in fibroblasts derived from all three patients. In summary, our results directly illustrate the link between the identified PUS3 variants and reduced Ψ levels in the patient cells, providing a molecular explanation for the observed clinical phenotypes.
Keywords: PUS3; intellectual disorder; protein stability; pseudouridylation; tRNA modification.
© 2022 The Authors. Human Mutation published by Wiley Periodicals LLC.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
The molecular basis of tRNA selectivity by human pseudouridine synthase 3.Mol Cell. 2024 Jul 11;84(13):2472-2489.e8. doi: 10.1016/j.molcel.2024.06.013. Mol Cell. 2024. PMID: 38996458 Free PMC article.
-
A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition.Hum Genet. 2016 Jul;135(7):707-13. doi: 10.1007/s00439-016-1665-7. Epub 2016 Apr 7. Hum Genet. 2016. PMID: 27055666 Free PMC article.
-
Clinical and molecular delineation of PUS3-associated neurodevelopmental disorders.Clin Genet. 2021 Nov;100(5):628-633. doi: 10.1111/cge.14051. Epub 2021 Aug 31. Clin Genet. 2021. PMID: 34415064
-
Research progress of RNA pseudouridine modification in nervous system.Int J Neurosci. 2025 Jun;135(6):639-649. doi: 10.1080/00207454.2024.2315483. Epub 2024 Feb 29. Int J Neurosci. 2025. PMID: 38407188 Review.
-
Pseudouridine in RNA: what, where, how, and why.IUBMB Life. 2000 May;49(5):341-51. doi: 10.1080/152165400410182. IUBMB Life. 2000. PMID: 10902565 Review.
Cited by
-
RNA modifications and their role in gene expression.Front Mol Biosci. 2025 Apr 25;12:1537861. doi: 10.3389/fmolb.2025.1537861. eCollection 2025. Front Mol Biosci. 2025. PMID: 40351534 Free PMC article. Review.
-
The molecular basis of tRNA selectivity by human pseudouridine synthase 3.Mol Cell. 2024 Jul 11;84(13):2472-2489.e8. doi: 10.1016/j.molcel.2024.06.013. Mol Cell. 2024. PMID: 38996458 Free PMC article.
-
Pseudouridine and N1-methylpseudouridine as potent nucleotide analogues for RNA therapy and vaccine development.RSC Chem Biol. 2024 Mar 19;5(5):418-425. doi: 10.1039/d4cb00022f. eCollection 2024 May 8. RSC Chem Biol. 2024. PMID: 38725905 Free PMC article. Review.
-
RNA modification in cardiovascular disease: implications for therapeutic interventions.Signal Transduct Target Ther. 2023 Oct 27;8(1):412. doi: 10.1038/s41392-023-01638-7. Signal Transduct Target Ther. 2023. PMID: 37884527 Free PMC article. Review.
-
Epitranscriptomics as a New Layer of Regulation of Gene Expression in Skeletal Muscle: Known Functions and Future Perspectives.Int J Mol Sci. 2023 Oct 13;24(20):15161. doi: 10.3390/ijms242015161. Int J Mol Sci. 2023. PMID: 37894843 Free PMC article. Review.
References
-
- Angelova, M. T. , Dimitrova, D. G. , Dinges, N. , Lence, T. , Worpenberg, L. , Carré, C. , & Roignant, J. Y. (2018). The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders. Frontiers in Bioengineering and Biotechnology, 6, 46. 10.3389/fbioe.2018.00046 - DOI - PMC - PubMed
-
- Begik, O. , Lucas, M. C. , Pryszcz, L. P. , Ramirez, J. M. , Medina, R. , Milenkovic, I. , Cruciani, S. , Liu H., Vieira H. G. S., Sas‐Chen A., Mattick J. S., Schwartz S., Novoa E. M. (2021). Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nature Biotechnology, 39(10), 1278–1291. 10.1038/s41587-021-00915-6 - DOI - PubMed
-
- Boccaletto, P. , MacHnicka, M. A. , Purta, E. , Piątkowski, P. , Bagiński, B. , Wirecki, T. K. , De crécy‐Lagard, V. , Ross, R. , Limbach, P. A. , Kotter, A. , Helm, M. , & Bujnicki, J. M. (2018). MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Research, 46(D1), D303–D307. 10.1093/nar/gkx1030 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases