Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 10;13(34):10011-10019.
doi: 10.1039/d2sc03343g. eCollection 2022 Aug 31.

Room temperature charge-transfer phosphorescence from organic donor-acceptor Co-crystals

Affiliations

Room temperature charge-transfer phosphorescence from organic donor-acceptor Co-crystals

Swadhin Garain et al. Chem Sci. .

Abstract

Engineering the electronic excited state manifolds of organic molecules can give rise to various functional outcomes, including ambient triplet harvesting, that has received prodigious attention in the recent past. Herein, we introduce a modular, non-covalent approach to bias the entire excited state landscape of an organic molecule using tunable 'through-space charge-transfer' interactions with appropriate donors. Although charge-transfer (CT) donor-acceptor complexes have been extensively explored as functional and supramolecular motifs in the realm of soft organic materials, they could not imprint their potentiality in the field of luminescent materials, and it still remains as a challenge. Thus, in the present study, we investigate the modulation of the excited state emission characteristics of a simple pyromellitic diimide derivative on complexation with appropriate donor molecules of varying electronic characteristics to demonstrate the selective harvesting of emission from its locally excited (LE) and CT singlet and triplet states. Remarkably, co-crystallization of the pyromellitic diimide with heavy-atom substituted and electron-rich aromatic donors leads to an unprecedented ambient CT phosphorescence with impressive efficiency and notable lifetime. Further, gradual minimizing of the electron-donating strength of the donors from 1,4-diiodo-2,3,5,6-tetramethylbenzene (or 1,2-diiodo-3,4,5,6-tetramethylbenzene) to 1,2-diiodo-4,5-dimethylbenzene and 1-bromo-4-iodobenzene modulates the source of ambient phosphorescence emission from the 3CT excited state to 3LE excited state. Through comprehensive spectroscopic, theoretical studies, and single-crystal analyses, we elucidate the unparalleled role of intermolecular donor-acceptor interactions to toggle between the emissive excited states and stabilize the triplet excitons. We envisage that the present study will be able to provide new and innovative dimensions to the existing molecular designs employed for triplet harvesting.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Schematic of the modular donor–acceptor co-assembly strategy to tune the excited state manifold of pyromellitic diimide phosphor. Molecular structure of PmDI (acceptor) and its tunable emission with different aromatic donors; locally excited fluorescence (1LE) in THF solution, charge-transfer (1CT) fluorescence in electron rich-aromatic solvents (p-xylene, mesitylene and TMB), locally excited phosphorescence (3LE) in 1-bromo-4-iodobenzene (D4), 1, 4-dibromobenzene (D5) and charge-transfer phosphorescence (3CT) in 1,4-diiodo-2,3,5,6-tetramethylbenzene (D1), 1,2-diiodo-3,4,5,6-tetramethylbenzene (D2). Simplified Jablonski diagram showing various emission processes possible in the excited state (photographs of 1LE, 1CT emission obtained by 340 nm and 370 nm Xe lamp excitation and 3LE and 3CT phosphorescent co-crystals under 365 nm UV lamp).
Fig. 2
Fig. 2. Solution state CT fluorescence of PmDI in electron rich aromatic solvents: (a) molecular structure of PmDI (acceptor) and different non-aromatic and aromatic solvents with varying electronic character. (b) Normalized absorption spectra of PmDI in various solvents, which shows the presence of ground state CT band in electron rich aromatic donors. (c) Normalized steady-state emission spectra showing 1LE emission in THF, benzene and broad, red-shifted CT emission band in electron-rich aromatic solvents (λexc = 340 nm). (d) Normalized emission spectra showing CT emission in electron-rich aromatic solvents upon selective excitation at the CT band (λexc = 420 nm). (e) Normalized emission spectra showing distinct 1LE emission in THF (λexc = 340 nm) and 1CT emission in TMB (λexc = 420 nm). (f) Fluorescence lifetime decay profiles of 1LE emission in THF (λexc = 340 nm, λcollected = 420 nm) and 1CT emission in TMB (λexc = 442 nm, λcollected = 500 nm), IRF is the instrument response function. (g) Plot of emission maximum versus the ionization potential of various aromatic solvents under study, which shows that emission maximum becomes red-shifted upon decreasing the ionization potential of the solvent.
Fig. 3
Fig. 3. 3CT phosphorescence studies of A+D1 and A+D2 co-crystals: (a) molecular structures for A+D1 and A+D2 donor–acceptor complexes. (b) Normalized excitation spectra of individual donors (D1 and D2, λmonitored = 420 nm), acceptor (A, λmonitored = 560 nm) and donor–acceptor co-crystal (A+D1 and A+D2, λmonitored = 560 nm), which shows the red-shifted band for donor–acceptor co-crystal compared to individual components suggesting the formation of CT complex. (c) Steady-state emission spectra of the acceptor (A) and donor–acceptor co-crystal (A+D1 and A+D2), which shows the weakly emissive nature of bare acceptor and highly emissive nature of donor–acceptor pair (λexc = 340 nm). (d) Normalized delayed emission spectra of acceptor (A) doped in PMMA matrix at 20 K (1 wt% with respect to PMMA) and donor–acceptor co-crystal at room temperature, which shows a red-shift in the emission maximum of donor–acceptor pair compared to the 3LE emission of acceptor hinting towards the 3CT emission (λexc = 340 nm, delay time = 1 ms for A and 50 μs for A+D1 and A+D2). (e) Lifetime decay profile for A+D1 and A+D2 co-crystal upon excitation at 340 nm and selective excitation at CT band (λexc = 430 nm, λcollected = 560 nm). Temperature-dependent (f) steady-state emission spectra and (g) lifetime decay profile (λcollected = 560 nm) of A+D1 showing 3CT phosphorescence nature of the emission upon selective excitation at the CT band (λexc = 430 nm).
Fig. 4
Fig. 4. (a) Single-crystal X-ray diffraction data of A+D2 co-crystal: donor–acceptor arrangement of A+D2 pair, driven by various halogen bonding and weak π⋯π interactions, such as (a) I⋯π (marked with red lines), π⋯π (marked with black lines) in a stack and (b) I⋯CO (marked with green lines) in the same plane. (c) Theoretical calculations of A+D1: natural transition orbitals (NTOs) of A+D1 pair for first excited singlet (S1) and triplet state (T1), calculated using TD-CAM-B3LYP level in conjunction with 6-31+g(d) basis set for C, N, O, H and LANL2DZ basis set showing CT character.
Fig. 5
Fig. 5. 3LE phosphorescence studies and single-crystal X-ray diffraction data of A+D4 co-crystal: (a) excitation spectra of individual donor (D4, λmonitored = 420 nm), acceptor (A, λmonitored = 560 nm) and donor–acceptor co-crystal (A+D4, λmonitored = 560 nm), which suggest absence of CT band (inset shows molecular structure for A+D4 pair). (b) Steady-state emission spectra of bare acceptor (A) and donor–acceptor pair (A+D4) shows weakly emissive nature of acceptor and highly emissive nature of donor–acceptor co-crystal (λexc = 340 nm). (c) Normalized delayed emission spectra of acceptor doped in PMMA matrix at 20 K (1 wt% with respect to PMMA) and donor–acceptor pair at room temperature show the same emission maximum, hinting towards the 3LE emission (λexc = 340 nm). Donor–acceptor arrangement of A+D4 pair, driven by halogen carbonyl interactions, (d) I⋯CO (marked with red lines) and Br⋯CO (marked with green lines) in the same plane, (e) I⋯CO (marked with light-green and brown lines) and Br⋯CO (marked with blue and orange lines) in the parallel plane.

References

    1. Hirata S. Adv. Opt. Mater. 2017;5:1700116. doi: 10.1002/adom.201700116. - DOI
    2. Wong M. Y. Zysman-Colman E. Adv. Mater. 2017;29:1605444. doi: 10.1002/adma.201605444. - DOI - PubMed
    3. Zhao W. He Z. Jacky W. Y. L. Peng Q. Ma H. Shuai Z. Bai G. Hao J. Tang B. Z. Chem. 2016;1:592–602. doi: 10.1016/j.chempr.2016.08.010. - DOI
    4. Xu S. Chen R. Zheng C. Huang W. Adv. Mater. 2016;28:9920–9940. doi: 10.1002/adma.201602604. - DOI - PubMed
    5. Zhao W. He Z. Tang B. Z. Nat. Rev. Mater. 2020;5:869–885. doi: 10.1038/s41578-020-0223-z. - DOI
    6. Ma X. Wang J. Tian H. Acc. Chem. Res. 2019;52:738–748. doi: 10.1021/acs.accounts.8b00620. - DOI - PubMed
    7. Zhang T. Ma X. Wu H. Zhu L. Zhao Y. Tian H. Angew. Chem., Int. Ed. 2020;59:11206–11216. doi: 10.1002/anie.201915433. - DOI - PubMed
    8. Wang Y. Gao H. Yang J. Fang M. Ding D. Tang B. Li Z. Adv. Mater. 2021;33:2007811. doi: 10.1002/adma.202007811. - DOI - PubMed
    9. Nidhankar A. D. Goudappagouda Wakchaure V. C. Babu S. S. Chem. Sci. 2021;12:4216–4236. doi: 10.1039/D1SC00446H. - DOI - PMC - PubMed
    10. Hackney H. E. Perepichka D. F. Aggregate. 2021:e123.
    11. Gao H. Ma X. Aggregate. 2021;2:e38.
    1. Bolton O. Lee K. Kim J.-H. Lin K. Y. Kim J. Nat. Chem. 2011;3:205–210. doi: 10.1038/nchem.984. - DOI - PubMed
    2. An Z. Zheng C. Tao Y. Chen R. Shi H. Chen T. Wang Z. Li H. Deng R. Li X. Huang W. Nat. Mater. 2015;14:685–690. doi: 10.1038/nmat4259. - DOI - PubMed
    3. Cai S. Shi H. Li J. Gu L. Cheng Y. N. Z. Wang S. Xiong W. Li L. An Z. Huang W. Adv. Mater. 2017;29:1701244. doi: 10.1002/adma.201701244. - DOI - PubMed
    4. Alam P. Cheung T. S. Leung N. L. C. Zhang J. Guo J. Du L. Kwok R. T. K. Lam J. W. Y. Zeng Z. Phillips D. L. Sung H. H. Y. Williams I. D. Tang B. Z. J. Am. Chem. Soc. 2022;144:3050–3062. doi: 10.1021/jacs.1c11480. - DOI - PubMed
    5. Gong Y. Zhao L. Peng Q. Fan D. Yuan W. Zhang Y. Tang B. Z. Chem. Sci. 2015;6:4438–4444. doi: 10.1039/C5SC00253B. - DOI - PMC - PubMed
    6. Alam P. Leung N. Liu J. Zhang X. He Z. Kwok R. T. K. Lam J. W. Y. Sung H. H. Y. Williams I. D. Peng Q. Tang B. Z. Adv. Mater. 2020;32:2001026. doi: 10.1002/adma.202001026. - DOI - PubMed
    7. Wang Y. Yang J. Tian Y. Fang M. Liao Q. Wang L. Hu W. Tang B. Z. Li Z. Chem. Sci. 2020;11:833–838. doi: 10.1039/C9SC04632A. - DOI - PMC - PubMed
    8. Liao Q. Gao Q. Wang J. Gong Y. Peng Q. Tian Y. Fan Y. Guo H. Ding D. Li Q. Li Z. Angew. Chem., Int. Ed. 2020;59:9946–9951. doi: 10.1002/anie.201916057. - DOI - PubMed
    9. Ren J. Wang Y. Tian Y. Liu Z. Xiao X. Yang J. Fang M. Li Z. Angew. Chem., Int. Ed. 2021;60:12335–12340. doi: 10.1002/anie.202101994. - DOI - PubMed
    10. Zhang Z.-Y. Liu Y. Chem. Sci. 2019;10:7773–7778. doi: 10.1039/C9SC02633A. - DOI - PMC - PubMed
    1. Kwon M. S. Lee D. Seo S. Jung J. Kim J. Angew. Chem., Int. Ed. 2014;53:11177–11181. doi: 10.1002/anie.201404490. - DOI - PubMed
    2. Kuila S. Garain S. Bandi S. George S. J. Adv. Funct. Mater. 2020;30:2003693. doi: 10.1002/adfm.202003693. - DOI
    3. Wu H. Chi W. Chen Z. Liu G. Gu L. Bindra A. K. Yang G. Liu X. Zhao Y. Adv. Funct. Mater. 2019;29:1807243. doi: 10.1002/adfm.201807243. - DOI
    4. Wang Z. Zhang Y. Wang C. Zheng X. Zheng Y. Gao L. Yang C. Li Y. Qu L. Zhao Y. Adv. Mater. 2020;32:1907355. doi: 10.1002/adma.201907355. - DOI - PubMed
    5. Su Y. Zhang Y. Wang Z. Gao W. Jia P. Zhang D. Yang C. Li Y. Zhao Y. Angew. Chem., Int. Ed. 2020;59:9967–9971. doi: 10.1002/anie.201912102. - DOI - PubMed
    6. Wang C. Zhang Y. Wang Z. Zheng Y. Zheng X. Gao L. Zhou Q. Hao J. Pi B. Li Q. Yang C. Li Y. Wang K. Zhao Y. Adv. Funct. Mater. 2022;32:2111941. doi: 10.1002/adfm.202111941. - DOI
    7. Cai S. Sun Z. Wang H. Yao X. Ma H. Jia W. Wang S. Li Z. Shi H. An Z. Ishida Y. Aida T. Huang W. J. Am. Chem. Soc. 2021;143:16256–16263. doi: 10.1021/jacs.1c07674. - DOI - PubMed
    8. Louis M. Thomas H. Gmelch M. Haft A. Fries F. Reineke S. Adv. Mater. 2019;31:1807887. doi: 10.1002/adma.201807887. - DOI - PubMed
    9. Thomas H. Pastoetter D. L. Gmelch M. Achenbach T. Schlçgl A. Louis M. Feng X. Reineke S. Adv. Mater. 2020;32:2000880. doi: 10.1002/adma.202000880. - DOI - PubMed
    1. Wang J. Li Z. D. Lu F. Wang J. Hu W. Cao X. M. Ma X. Tian H. J. Am. Chem. Soc. 2018;140:1916–1923. doi: 10.1021/jacs.7b12800. - DOI - PubMed
    2. Wang J. Huang Z. Ma X. Tian H. Angew. Chem., Int. Ed. 2020;59:9928–9933. doi: 10.1002/anie.201914513. - DOI - PubMed
    3. Yao X. Wang J. Jiao D. Huang Z. Mhirsi O. Lossada F. Chen L. Haehnle B. Kuehne A. J. C. Ma X. Tian H. Walther A. Adv. Mater. 2020:2005973. - PMC - PubMed
    4. Zhang Z. Y. Chen Y. Liu Y. Angew. Chem., Int. Ed. 2019;58:6028–6032. doi: 10.1002/anie.201901882. - DOI - PubMed
    5. Huo M. Dai X. Y. Liu Y. Angew. Chem., Int. Ed. 2021;60:27171–27177. doi: 10.1002/anie.202113577. - DOI - PubMed
    6. Zhang Z.-Y. Xu W.-W. Xu W.-S. Niu J. Sun X.-H. Liu Y. Angew. Chem., Int. Ed. 2020;59:18748–18754. doi: 10.1002/anie.202008516. - DOI - PubMed
    7. Sun S. Wang J. Ma L. Ma X. Tian H. Angew. Chem., Int. Ed. 2021;60:18557–18560. doi: 10.1002/anie.202107323. - DOI - PubMed
    8. Shen F.-F. Chen Y. Dai X. Zhang H.-Y. Zhang B. Liu Y.-H. Liu Y. Chem. Sci. 2021;12:1851–1857. doi: 10.1039/D0SC05343K. - DOI - PMC - PubMed
    9. Zhou W. L. Lin W. Chen Y. Dai X. Y. Liu Z. Liu Y. Chem. Sci. 2022;13:573–579. doi: 10.1039/D1SC05861D. - DOI - PMC - PubMed
    10. Li Z. Han Y. Nie F. Liu M. Zhong H. Wang F. Angew. Chem., Int. Ed. 2021;60:8212–8219. doi: 10.1002/anie.202015846. - DOI - PubMed
    11. Li Z. Han Y. Wang F. Nat. Commun. 2019;10:3735. doi: 10.1038/s41467-019-11650-7. - DOI - PMC - PubMed
    12. Kuila S. Rao K. V. Garain S. Samanta P. K. Das S. Pati S. K. Eswaramoorthy M. George S. J. Angew. Chem., Int. Ed. 2018;57:17115–17119. doi: 10.1002/anie.201810823. - DOI - PubMed
    13. Garain S. Garain B. C. Eswaramoorthy M. Pati S. K. George S. J. Angew. Chem., Int. Ed. 2021;60:19720–19724. doi: 10.1002/anie.202107295. - DOI - PubMed
    1. Uoyama H. Goushi K. Shizu K. Nomura H. Adachi C. Nature. 2012;492:234–238. doi: 10.1038/nature11687. - DOI - PubMed
    2. Zhang Q. Kuwabara H. Potscavage W. j. Huang S. Hatae Y. Shibata T. Adachi C. J. Am. Chem. Soc. 2014;136:18070–18081. doi: 10.1021/ja510144h. - DOI - PubMed