Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 25;12(37):24217-24221.
doi: 10.1039/d2ra04709h. eCollection 2022 Aug 22.

Fe(iii)-catalysed selective C-N bond cleavage of N-phenylamides by an electrochemical method

Affiliations

Fe(iii)-catalysed selective C-N bond cleavage of N-phenylamides by an electrochemical method

Yiwen Xu et al. RSC Adv. .

Abstract

An Fe(iii)-catalysed transformation of secondary N-phenyl substituted amides to primary amides by an electrochemical method is developed. Regioselective aryl C-H oxygenation occurs during the reaction, promoting selective C(phenyl)-N bond cleavage to form primary amides in yields of up to 92%.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Strategies for activation of amido C–N bonds.
Scheme 2
Scheme 2. Control experiments for reaction pathway studies.
Fig. 1
Fig. 1. Cyclic voltammograms experiment (Blank: 0.1 M nBu4NPF6, MeCN/H2O = 1/1; a: Blank + FeCl3·6H2O 0.02 mmol; b: Blank + 1a 0.1 mmol + FeCl3·6H2O 0.02 mmo; c: Blank + 3a 0.1 mmol + FeCl3·6H2O 0.02 mmol).
Fig. 2
Fig. 2. Possible reaction pathway.
Scheme 3
Scheme 3. Applications in the synthesis of selected compounds.
Scheme 4
Scheme 4. Gram-scale experiment.

Similar articles

References

    1. Qin Y. Li G. Qi T. Huang H. Mater. Chem. Front. 2020;4:1554.
    2. Mahesh S. Tang K.-C. Raj M. Molecules. 2018;23:2615. - PMC - PubMed
    3. Dydio P. Lichosyt D. Jurczak J. Chem. Soc. Rev. 2011;40:2971. - PubMed
    4. Li Z.-T. Hou J.-L. Li C. Acc. Chem. Res. 2008;41:1343. - PubMed
    1. Li G. Szostak M. Chem. Rec. 2020;20:649. - PubMed
    2. Li G. Szostak M. Nat. Commun. 2018;9:4165. - PMC - PubMed
    3. Gao P. Szostak M. Org. Lett. 2020;22:6010. - PubMed
    4. Rahman M. M. Szostak M. Org. Lett. 2021;23:4818. - PubMed
    5. Meng G. Szostak M. Org. Lett. 2016;18:796. - PubMed
    6. Lei P. Meng G. Shi S. Ling Y. An J. Szostak R. Szostak M. Chem. Sci. 2017;8:6525. - PMC - PubMed
    7. Zhou T. Li G. Nolan S. P. Szostak M. Org. Lett. 2019;21:3304. - PubMed
    1. Tobisu M. Nakamura K. Chatani N. J. Am. Chem. Soc. 2014;136:5587. - PubMed
    2. Wang M. Zhang X. Zhuang Y.-X. He Y.-H. Loh T.-P. J. Am. Chem. Soc. 2015;137:1341. - PubMed
    3. Lei Y. Wrobleski A. D. Golden J. E. Powell D. R. Aube J. J. Am. Chem. Soc. 2005;127:4552. - PubMed
    1. Sanderson R. T., Polar Covalence; Academic Press: New York, 1983
    2. Sanderson R. T., Chemical Bonds and Bond Energy; Academic Press: New York, 1976
    1. Zhang Z. Zheng D. Wan Y. Zhang G. Bi J. Liu Q. Liu T. Shi L. J. Org. Chem. 2018;83:1369. - PubMed
    2. Zhang Z. Li X. Song M. Wang Y. Zheng D. Zhang G. Chen G. J. Org. Chem. 2019;84:12792. - PubMed