Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 21;2(1):166-170.
doi: 10.1039/c9na00671k. eCollection 2020 Jan 22.

Regioselective thiocyanation of corroles and the synthesis of gold nanoparticle-corrole assemblies

Affiliations

Regioselective thiocyanation of corroles and the synthesis of gold nanoparticle-corrole assemblies

Kasturi Sahu et al. Nanoscale Adv. .

Abstract

Herein we demonstrate a synthetic protocol for the regioselective thiocyanation of corroles. To the best of our knowledge, thiocyanato appended corrole has never been reported earlier. The resulting thiocyanato appended corrole turned out to be a good corrole based precursor for the facile synthesis of thiol protected gold nanoparticles (Au NPs). The ligand system acts as a good bidentate framework and passivates the gold surface. A strong electronic interaction between the corrole and the gold nanoparticles is manifested by their unique photo physical properties and it also confirms that the binding through β-substitutions has a more pronounced effect even though the corrole rings are face-off to the gold surface.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest to declare.

Figures

Scheme 1
Scheme 1. Synthetic route to 3,17-bis(thiocyanato)–5,10,15-triphenylcorrole, 1.
Fig. 1
Fig. 1. Perspective view of 1. Hydrogen atoms are omitted for clarity.
Fig. 2
Fig. 2. Time evolution UV-vis spectra of a mixture of 1 (∼10−6M), NaBH4 (∼10−4M), and HAuCl4 (∼10−5 M) in DMF.
Fig. 3
Fig. 3. Plausible structure of gold nano-corrole assemblies.
Fig. 4
Fig. 4. Time evolution emission spectra of a mixture of 1 (∼10−6 M), NaBH4 (∼10−4M), and HAuCl4 (∼10−5 M) in DMF.
Fig. 5
Fig. 5. Fluorescence decay profiles of (a) 1 (—); λem = 672 nm and (b) 1-Au NPs (); λem = 672 nm. The red line represents the IRF.
Fig. 6
Fig. 6. (a) TEM image of the nanoparticles (the inset shows the diffraction contrast fringes) and (b) histograms of the particle size.
Fig. 7
Fig. 7. N 1s XP spectrum of 1-Au NPs on a Si substrate. Measured data are in black, fitted components are in orange, the background is in green and the sum is in red.
Fig. 8
Fig. 8. S 2p spectrum of 1-Au NPs on a Si substrate. Measured data are in black, the fit for bound thiol is in orange, the fit for free thiol is in blue, the fit for oxidized thiol is in dark green, the background is in green and the sum is in red.

Similar articles

Cited by

References

    1. Daniel M.-C. Astruc D. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. - DOI - PubMed
    2. Corma A. Garcia H. Chem. Soc. Rev. 2008;37:2096–2126. doi: 10.1039/B707314N. - DOI - PubMed
    3. Campbell C. T. Science. 2004;306:234–235. doi: 10.1126/science.1104246. - DOI - PubMed
    1. Giljohann D. A. Seferos D. S. Daniel W. L. Massich M. D. Patel P. C. Mirkin C. A. Angew. Chem., Int. Ed. 2010;49:3280–3294. doi: 10.1002/anie.200904359. - DOI - PMC - PubMed
    2. Dreaden E. C. Alkilany A. M. Huang X. Murphy C. J. El-Sayed M. A. Chem. Soc. Rev. 2012;41:2740–2779. doi: 10.1039/C1CS15237H. - DOI - PMC - PubMed
    3. Li J. J. Zou L. Hartono D. Ong C. N. Bay B. H. Lanry Yung L. Y. Adv. Mater. 2008;20:138–142. doi: 10.1002/adma.200701853. - DOI
    1. Chah S. Hammond M. R. Zare R. N. Chem. Biol. 2005;12:323–328. doi: 10.1016/j.chembiol.2005.01.013. - DOI - PubMed
    2. Peng G. Tisch U. Adams O. Hakim M. Shehada N. Broza Y. Y. Billan S. Abdah-Bortnyak R. Kuten A. Haick H. Nat. Nanotechnol. 2009;4:669. doi: 10.1038/nnano.2009.235. - DOI - PubMed
    1. Lu Y.-C. Xu Z. Gasteiger H. A. Chen S. Hamad-Schifferli K. Shao-Horn Y. J. Am. Chem. Soc. 2010;132:12170–12171. doi: 10.1021/ja1036572. - DOI - PubMed
    2. Muszynski R. Seger B. Kamat P. V. J. Phys. Chem. C. 2008;112:5263–5266. doi: 10.1021/jp800977b. - DOI
    3. Luo J. Wang L. Mott D. Njoki P. N. Lin Y. He T. Xu Z. Wanjana B. N. Lim I. I. S. Zhong C. J. Adv. Mater. 2008;20:4342–4347. doi: 10.1002/adma.200703009. - DOI
    1. Talley C. E. Jackson J. B. Oubre C. Grady N. K. Hollars C. W. Lane S. M. Huser T. R. Nordlander P. Halas N. J. Nano Lett. 2005;5:1569–1574. doi: 10.1021/nl050928v. - DOI - PubMed
    2. Wustholz K. L. Henry A.-I. McMahon J. M. Freeman R. G. Valley N. Piotti M. E. Natan M. J. Schatz G. C. Van Duyne R. P. J. Am. Chem. Soc. 2010;132:10903–10910. doi: 10.1021/ja104174m. - DOI - PubMed
    3. Félidj N. Aubard J. Lévi G. Krenn J. R. Hohenau A. Schider G. Leitner A. Aussenegg F. R. Appl. Phys. Lett. 2003;82:3095–3097. doi: 10.1063/1.1571979. - DOI