Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 3;12(5):701-713.
doi: 10.3390/clinpract12050073.

Aggressiveness of Grade 4 Gliomas of Adults

Affiliations

Aggressiveness of Grade 4 Gliomas of Adults

Mariana Deacu et al. Clin Pract. .

Abstract

Grade 4 adult gliomas are IDH-mutant astrocytomas and IDH-wildtype glioblastomas. They have a very high mortality rate, with survival at 5 years not exceeding 5%. We aimed to conduct a clinical imaging and morphogenetic characterization of them, as well as to identify the main negative prognostic factors that give them such aggressiveness. We conducted a ten-year retrospective study. We followed the clinical, imaging, and morphogenetic aspects of the cases. We analyzed immunohistochemical markers (IDH1, Ki-67, and nestin) and FISH tests based on the CDKN2A gene. The obtained results were analyzed using SPSS Statistics with the appropriate parameters. The clinical aspects representing negative prognostic factors were represented by patients' comorbidities: hypertension (HR = 1.776) and diabetes mellitus/hyperglycemia (HR = 2.159). The lesions were mostly supratentorial, and the temporal lobe was the most affected. The mean volume was 88.05 cm3 and produced a midline shift with an average of 8.52 mm. Subtotal surgical resection was a negative prognostic factor (HR = 1.877). The proliferative index did not influence survival rate, whereas CDKN2A gene mutations were shown to have a major impact on survival. We identified the main negative prognostic factors that support the aggressiveness of grade 4 gliomas: patient comorbidities, type of surgical resection, degree of cell differentiation, and CDKN2A gene mutations.

Keywords: CDKN2A; IDH1; Ki-67; astrocytoma; glioblastoma.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) Kaplan–Meier survival graphic that shows a lower survival rate for patients with high blood pressure. (B) Univariate cox regression analysis that demonstrates the risk of death in presence of high blood pressure. (C) Kaplan–Meier survival graphic that shows a lower survival rate for patients with diabetes or hyperglycemia. (D) Univariate cox regression analysis that demonstrates the risk of death in presence of diabetes mellitus or hyperglycemia.
Figure 2
Figure 2
(A) Kaplan–Meier survival graphic that shows a lower survival rate for patients with the presence of tumor residue. (B) Univariate cox regression analysis that demonstrates the risk of death in presence of tumor residue.
Figure 3
Figure 3
(A) Kaplan Meier survival graphic that shows a lower survival rate for patients with alterations of CDKN2A gene. (B) Univariate cox regression analysis that expresses the risk of death in presence of deletions and amplifications of CDKN2A gene.

References

    1. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021;23:1231–1251. doi: 10.1093/neuonc/noab106. - DOI - PMC - PubMed
    1. Forjaz G., Barnholtz-Sloan J.S., Kruchko C., Siegel R., Negoita S., Ostrom Q.T., Dickie L., Ruhl J., van Dyke A., Patil N., et al. An updated histology recode for the analysis of primary malignant and nonmalignant brain and other central nervous system tumors in the Surveillance, Epidemiology, and End Results Program. Neurooncol. Adv. 2020;3:vdaa175. doi: 10.1093/noajnl/vdaa175. - DOI - PMC - PubMed
    1. Biserova K., Jakovlevs A., Uljanovs R., Strumfa I. Cancer Stem Cells: Significance in Origin, Pathogenesis and Treatment of Glioblastoma. Cells. 2021;10:621. doi: 10.3390/cells10030621. - DOI - PMC - PubMed
    1. Hanif F., Muzaffar K., Perveen K., Malhi S.M., Simjee S.U. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac. J. Cancer Prev. 2017;18:3–9. doi: 10.22034/APJCP.2017.18.1.3. - DOI - PMC - PubMed
    1. Georgescu M.M., Olar A. Genetic and histologic spatiotemporal evolution of recurrent, multifocal, multicentric and metastatic glioblastoma. Acta Neuropathol. Commun. 2020;8:10. doi: 10.1186/s40478-020-0889-x. - DOI - PMC - PubMed

LinkOut - more resources