Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct:289:121801.
doi: 10.1016/j.biomaterials.2022.121801. Epub 2022 Sep 13.

Tumor oxygenation nanoliposome synergistic hypoxia-inducible-factor-1 inhibitor enhanced Iodine-125 seed brachytherapy for esophageal cancer

Affiliations

Tumor oxygenation nanoliposome synergistic hypoxia-inducible-factor-1 inhibitor enhanced Iodine-125 seed brachytherapy for esophageal cancer

Xijuan Yao et al. Biomaterials. 2022 Oct.

Abstract

Iodine-125 (125I) brachytherapy has become one of the most effective palliative treatment options for advanced esophageal cancer. However, resistance toward 125I brachytherapy caused by pre-existing tumor hypoxia and hypoxia-inducible factor 1 (HIF-1) signaling pathway activation represents a significant limitation in esophageal cancer treatment. To circumvent these problems, herein, we proposed an innovative strategy to alleviate radioresistance of brachytherapy by co-encapsulating catalase (CAT) and HIF-1 inhibitor-acriflavine (ACF) into the hydrophilic cavities of liposome, termed as "ACF-CAT@Lipo". Under overexpressed H2O2 stimulation in the tumor region, the fabricated ACF-CAT@Lipo can generate an amount of O2 and alleviate tumor hypoxia in vitro and in vivo. Furthermore, cooperating with ACF, the expression of hypoxia-related protein (e.g. HIF-1α, VEGF, MMP-2) are obviously decreased. Importantly, the copious oxygenation and the significant inhibition expression of HIF-1α can further improve the radiosensitivity of 125I brachytherapy and finally realize the eradication of esophageal cancer in vivo. The oxygen enrichment and HIF-1 inhibition function of ACF-CAT@Lipo provides a new strategy to overcome the brachytherapy resistance of esophageal cancer therapy.

Keywords: (125)I brachytherapy; Esophageal cancer; HIF-1 functional inhibition; Radiosensitizer; Tumor hypoxia.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources