Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding
- PMID: 36145328
- PMCID: PMC9501577
- DOI: 10.3390/ph15091107
Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding
Abstract
Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential. Rhenium complexes, amongst others, are particularly attractive due to their low in vivo toxicity and high antimicrobial activity, but little is known about their targets and mechanism of action. In this study, a series of rhenium di- and tricarbonyl diimine complexes were prepared and evaluated for their antimicrobial potential against eight different microorganisms comprising Gram-negative and -positive bacteria. Our data showed that none of the Re dicarbonyl or neutral tricarbonyl species have either bactericidal or bacteriostatic potential. In order to identify possible targets of the molecules, and thus possibly understand the observed differences in the antimicrobial efficacy of the molecules, we computationally evaluated the binding affinity of active and inactive complexes against structurally characterized membrane-bound S. aureus proteins. The computational analysis indicates two possible major targets for this class of compounds, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal peptidase II (LspA). Our results, consistent with the published in vitro studies, will be useful for the future design of rhenium tricarbonyl diimine-based antibiotics.
Keywords: AutoDock; LspA; LtaA; MRSA; S. aureus; antimicrobial; membrane; proteins; rhenium; tricarbonyl.
Conflict of interest statement
The authors declare no conflict of interest.
Figures









Similar articles
-
Computer-Aided Drug Design and Synthesis of Rhenium Clotrimazole Antimicrobial Agents.Antibiotics (Basel). 2023 Mar 20;12(3):619. doi: 10.3390/antibiotics12030619. Antibiotics (Basel). 2023. PMID: 36978486 Free PMC article.
-
Design, synthesis and in vivo evaluation of 3-arylcoumarin derivatives of rhenium(I) tricarbonyl complexes as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA).Eur J Med Chem. 2020 Nov 1;205:112533. doi: 10.1016/j.ejmech.2020.112533. Epub 2020 Jul 14. Eur J Med Chem. 2020. PMID: 32739550
-
Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release.Molecules. 2021 Aug 31;26(17):5302. doi: 10.3390/molecules26175302. Molecules. 2021. PMID: 34500734 Free PMC article.
-
Anticancer and Antibiotic Rhenium Tri- and Dicarbonyl Complexes: Current Research and Future Perspectives.Molecules. 2022 Jan 15;27(2):539. doi: 10.3390/molecules27020539. Molecules. 2022. PMID: 35056856 Free PMC article. Review.
-
Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents.Dalton Trans. 2017 Dec 21;46(47):16357-16380. doi: 10.1039/c7dt03465b. Epub 2017 Nov 7. Dalton Trans. 2017. PMID: 29110007 Review.
Cited by
-
Tricarbonyl rhenium(i) complexes with 8-hydroxyquinolines: structural, chemical, antibacterial, and anticancer characteristics.RSC Adv. 2024 Jun 5;14(25):18080-18092. doi: 10.1039/d4ra03141e. eCollection 2024 May 28. RSC Adv. 2024. PMID: 38841398 Free PMC article.
-
Computer-Aided Drug Design and Synthesis of Rhenium Clotrimazole Antimicrobial Agents.Antibiotics (Basel). 2023 Mar 20;12(3):619. doi: 10.3390/antibiotics12030619. Antibiotics (Basel). 2023. PMID: 36978486 Free PMC article.
-
Synthesis of a fac-Tricarbonylrhenium(I) Complex with Pyrithione, Its Physicochemical Characterization, and Assessment of Biological Effects.ACS Omega. 2025 Aug 15;10(33):38272-38291. doi: 10.1021/acsomega.5c06647. eCollection 2025 Aug 26. ACS Omega. 2025. PMID: 40893321 Free PMC article.
-
Pinene-Based Chiral Bipyridine Ligands Drive Potent Antibacterial Activity in Rhenium(I) Complexes.Molecules. 2025 Jul 29;30(15):3183. doi: 10.3390/molecules30153183. Molecules. 2025. PMID: 40807357 Free PMC article.
References
-
- WHO . Global Shortage of Innovative Antibiotics Fuels Emergence and Spread of Drug-Resistance. WHO; Geneva, Switzerland: 2021. p. 1.
-
- Hu Q., Cheng H., Yuan W., Zeng F., Shang W., Tang D., Xue W., Fu J., Zhou R., Zhu J., et al. Panton-Valentine leukocidin (PVL)-positive health care-associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective PVL-encoding bacteriophages. J. Clin. Microbiol. 2015;53:67–72. doi: 10.1128/JCM.01722-14. - DOI - PMC - PubMed
-
- Laupland K.B., Lyytikäinen O., Sgaard M., Kennedy K.J., Knudsen J.D., Ostergaard C., Galbraith J.C., Valiquette L., Jacobsson G., Collignon P., et al. The changing epidemiology of Staphylococcus aureus bloodstream infection: A multinational population-based surveillance study. Clin. Microbiol. Infect. 2013;19:465–471. doi: 10.1111/j.1469-0691.2012.03903.x. - DOI - PubMed
-
- Plackett B. Why big pharma has abandoned antibiotics. Nature. 2020;586:S50–S52. doi: 10.1038/d41586-020-02884-3. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases