Insights into the Pharmacogenetics of Tacrolimus Pharmacokinetics and Pharmacodynamics
- PMID: 36145503
- PMCID: PMC9503558
- DOI: 10.3390/pharmaceutics14091755
Insights into the Pharmacogenetics of Tacrolimus Pharmacokinetics and Pharmacodynamics
Abstract
The influence of pharmacogenetics in tacrolimus pharmacokinetics and pharmacodynamics needs further investigation, considering its potential in assisting clinicians to predict the optimal starting dosage and the need for a personalized adjustment of the dose, as well as to identify patients at a high risk of rejection, drug-related adverse effects, or poor outcomes. In the past decade, new pharmacokinetic strategies have been developed to improve personalized tacrolimus treatment. Several studies have shown that patients with tacrolimus doses C0/D < 1 ng/mL/mg may demonstrate a greater incidence of drug-related adverse events and infections. In addition, C0 tacrolimus intrapatient variability (IPV) has been identified as a potential biomarker to predict poor outcomes related to drug over- and under-exposure. With regard to tacrolimus pharmacodynamics, inconsistent genotype-phenotype relationships have been identified. The aim of this review is to provide a concise summary of currently available data regarding the influence of pharmacogenetics on the clinical outcome of patients with high intrapatient variability and/or a fast metabolizer phenotype. Moreover, the role of membrane transporters in the interindividual variability of responses to tacrolimus is critically discussed from a transporter scientist’s perspective. Indeed, the relationship between transporter polymorphisms and intracellular tacrolimus concentrations will help to elucidate the interplay between the biological mechanisms underlying genetic variations impacting drug concentrations and clinical effects.
Keywords: fast metabolizer; intrapatient variability; membrane transporters; personalized treatment; pharmacodynamics; pharmacogenetics; pharmacokinetics; tacrolimus.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Birdwell K.A., Decker B., Barbarino J.M., Peterson J.F., Stein C.M., Sadee W., Wang D., Vinks A.A., He Y., Swen J.J., et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin. Pharmacol. Ther. 2015;98:19–24. doi: 10.1002/cpt.113. - DOI - PMC - PubMed
-
- Brunet M., Van Gelder T., Åsberg A., Haufroid V., Hesselink D.A., Langman L., Lemaitre F., Marquet P., Seger C., Shipkova M., et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019;41:261–307. doi: 10.1097/FTD.0000000000000640. - DOI - PubMed
-
- Neuberger J.M., Bechstein W.O., Kuypers D.R.J., Burra P., Citterio F., De Geest S., Duvoux C., Jardine A.G., Kamar N., Krämer B.K., et al. Practical recommendations for long-term management of modifiable risks in kidney and liver transplant recipients: A guidance report and clinical checklist by the consensus on managing modifiable risk in transplantation (COMMIT) group. Transplantation. 2017;101:S1–S56. doi: 10.1097/TP.0000000000001651. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous
