Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul 24;13(7):553-566.
doi: 10.5306/wjco.v13.i7.553.

Nanomedicine approaches for treatment of hematologic and oncologic malignancies

Affiliations
Review

Nanomedicine approaches for treatment of hematologic and oncologic malignancies

Polyxeni Nteli et al. World J Clin Oncol. .

Abstract

Cancer is a leading cause of death worldwide. Nowadays, the therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology and novel nanomedicine products represents an opportunity to achieve sophisticated targeting strategies and multi-functionality. Nanomedicine is increasingly used to develop new cancer diagnosis and treatment methods since this technology can modulate the biodistribution and the target site accumulation of chemotherapeutic drugs, thereby reducing their toxicity. Cancer nanotechnology and cancer immunotherapy are two parallel themes that have emerged over the last few decades while searching for a cure for cancer. Immunotherapy is revolutionizing cancer treatment, as it can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. A deeper understanding of the human immune system allows the establishment of combination regimens in which immunotherapy is combined with other treatment modalities (as in the case of the nanodrug Ferumoxytol). Furthermore, the combination of gene therapy approaches with nanotechnology that aims to silence or express cancer-relevant genes via one-time treatment is gradually progressing from bench to bedside. The most common example includes lipid-based nanoparticles that target VEGF-Α and KRAS pathways. This review focuses on nanoparticle-based platforms utilized in recent advances aiming to increase the efficacy of currently available cancer therapies. The insights provided and the evidence obtained in this paper indicate a bright future ahead for immuno-oncology applications of engineering nanomedicines.

Keywords: Cancer; Cell therapy; Gene; Immunotherapy; Nanomedicine.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors who contributed their efforts in this manuscript.

Figures

Figure 1
Figure 1
Mechanism of action of immune checkpoints and immune checkpoint inhibitors. A: Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors block CTLA-4-CD80 or CTLA-4-CD86 binding to facilitate T cell activation; B: We see PD-1 as a surface receptor that is expressed by T cells and promotes apoptosis of antigen-specific T cells and reduces apoptosis of regulatory T cells through its interaction with its ligand, PD-L1, which is expressed by tumour cells and myeloid cells. CTLA-4: Cytotoxic T-lymphocyte-associated protein 4; MHC: Major histocompatibility complex; PD1: Programmed cell death protein 1.

References

    1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–249. - PubMed
    1. Rahib L, Wehner MR, Matrisian LM, Nead KT. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Netw Open. 2021;4:e214708. - PMC - PubMed
    1. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7:1016–1036. - PMC - PubMed
    1. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 1993;9:138–141. - PubMed
    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. - PubMed