Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Sep 19:1-19.
doi: 10.1007/s00521-022-07709-0. Online ahead of print.

Machine learning techniques for CT imaging diagnosis of novel coronavirus pneumonia: a review

Affiliations
Review

Machine learning techniques for CT imaging diagnosis of novel coronavirus pneumonia: a review

Jingjing Chen et al. Neural Comput Appl. .

Abstract

Since 2020, novel coronavirus pneumonia has been spreading rapidly around the world, bringing tremendous pressure on medical diagnosis and treatment for hospitals. Medical imaging methods, such as computed tomography (CT), play a crucial role in diagnosing and treating COVID-19. A large number of CT images (with large volume) are produced during the CT-based medical diagnosis. In such a situation, the diagnostic judgement by human eyes on the thousands of CT images is inefficient and time-consuming. Recently, in order to improve diagnostic efficiency, the machine learning technology is being widely used in computer-aided diagnosis and treatment systems (i.e., CT Imaging) to help doctors perform accurate analysis and provide them with effective diagnostic decision support. In this paper, we comprehensively review these frequently used machine learning methods applied in the CT Imaging Diagnosis for the COVID-19, discuss the machine learning-based applications from the various kinds of aspects including the image acquisition and pre-processing, image segmentation, quantitative analysis and diagnosis, and disease follow-up and prognosis. Moreover, we also discuss the limitations of the up-to-date machine learning technology in the context of CT imaging computer-aided diagnosis.

Keywords: Aided diagnosis; COVID-19; CT imaging; Machine learning.

PubMed Disclaimer

Conflict of interest statement

Conflict of interestThe authors declare that they have no conflicts of interest to report regarding this study.

Figures

Fig. 1
Fig. 1
The evolutional structure of machine learning-based image processing algorithms
Fig. 2
Fig. 2
The ML-based diagnosis models and their evolutional structure

Similar articles

Cited by

References

    1. Hui D, et al. The continuing COVID-19 epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–266. doi: 10.1016/j.ijid.2020.01.009. - DOI - PMC - PubMed
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5. - DOI - PMC - PubMed
    1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7. - DOI - PMC - PubMed
    1. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–1207. doi: 10.1056/NEJMoa2001316. - DOI - PMC - PubMed
    1. Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. 2020;296(2):E115–E117. doi: 10.1148/radiol.2020200432. - DOI - PMC - PubMed

LinkOut - more resources