Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2022 Sep 9;11(5):311-316.
doi: 10.5492/wjccm.v11.i5.311.

Data science in the intensive care unit

Affiliations
Editorial

Data science in the intensive care unit

Ming-Hao Luo et al. World J Crit Care Med. .

Abstract

In this editorial, we comment on the current development and deployment of data science in intensive care units (ICUs). Data in ICUs can be classified into qualitative and quantitative data with different technologies needed to translate and interpret them. Data science, in the form of artificial intelligence (AI), should find the right interaction between physicians, data and algorithm. For individual patients and physicians, sepsis and mechanical ventilation have been two important aspects where AI has been extensively studied. However, major risks of bias, lack of generalizability and poor clinical values remain. AI deployment in the ICUs should be emphasized more to facilitate AI development. For ICU management, AI has a huge potential in transforming resource allocation. The coronavirus disease 2019 pandemic has given opportunities to establish such systems which should be investigated further. Ethical concerns must be addressed when designing such AI.

Keywords: Artificial intelligence; COVID-19; Data science; Intensive care units; Interaction.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: All authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Interaction between artificial intelligence development and artificial intelligence deployment. Artificial intelligence (AI) development and AI deployment should be combined to revise current models and offer tangible benefits derived from current researches. AI development should find the right interaction between three roles: physicians, data and algorithm. AI deployment in the form of prospective randomized controlled trials can facilitate published models to generate bedside merits and evaluate whether major biases exist. The results from deployment testing can, in turn, offer insights into the development and modify the substandard algorithm. CRRT: Continuous renal replacement therapy; ECMO: Extracorporeal membrane oxygenation.
Figure 2
Figure 2
Resource allocation in the intensive care units. The applications of machine learning can target patients in need of intensive care units (ICUs) and predict the use of ICU resources. Machine learning can predict ICU transfer in hospitalized patients and predict the use of ICU resources, such as mechanical ventilation. It gives the chance to make the most use of resources, especially in ICUs where demand and supply frequently mismatch. Prediction in interventions, such as mechanical ventilation, would mean that the management groups can foresee changes and mobilize resource, such as equipment and staff, to cope with such demands in advance which is a positive factor for patient outcomes. AI: Artificial intelligence.

References

    1. Homayounieh F, Digumarthy S, Ebrahimian S, Rueckel J, Hoppe BF, Sabel BO, Conjeti S, Ridder K, Sistermanns M, Wang L, Preuhs A, Ghesu F, Mansoor A, Moghbel M, Botwin A, Singh R, Cartmell S, Patti J, Huemmer C, Fieselmann A, Joerger C, Mirshahzadeh N, Muse V, Kalra M. An Artificial Intelligence-Based Chest X-ray Model on Human Nodule Detection Accuracy From a Multicenter Study. JAMA Netw Open. 2021;4:e2141096. - PMC - PubMed
    1. Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021;18:465–478. - PMC - PubMed
    1. Xu Q, Zhan X, Zhou Z, Li Y, Xie P, Zhang S, Li X, Yu Y, Zhou C, Zhang L, Gevaert O, Lu G. AI-based analysis of CT images for rapid triage of COVID-19 patients. NPJ Digit Med. 2021;4:75. - PMC - PubMed
    1. Su Y, Qiu ZS, Chen J, Ju MJ, Ma GG, He JW, Yu SJ, Liu K, Lure FYM, Tu GW, Zhang YY, Luo Z. Usage of compromised lung volume in monitoring steroid therapy on severe COVID-19. Respir Res. 2022;23:105. - PMC - PubMed
    1. Goh KH, Wang L, Yeow AYK, Poh H, Li K, Yeow JJL, Tan GYH. Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat Commun. 2021;12:711. - PMC - PubMed

Publication types