Using machine learning for predicting outcomes in ACLF
- PMID: 36162084
- DOI: 10.1111/liv.15399
Using machine learning for predicting outcomes in ACLF
Comment on
-
APASL-ACLF Research Consortium-Artificial Intelligence (AARC-AI) model precisely predicts outcomes in acute-on-chronic liver failure patients.Liver Int. 2023 Feb;43(2):442-451. doi: 10.1111/liv.15361. Epub 2022 Oct 11. Liver Int. 2023. PMID: 35797245
References
REFERENCES
-
- Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP Rep. 2022;4(4):100443.
-
- Liyanage H, Liaw ST, Jonnagaddala J, et al. Artificial intelligence in primary health care: perceptions, issues, and challenges. Yearb Med Inform. 2019;28(1):41-46.
-
- Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-731.
-
- Kezer CA, Shah VH, Simonetto DA. Advances in predictive modeling using machine learning in the field of hepatology. Clin Liver Dis (Hoboken). 2021;18(6):288-291.
-
- Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study. EBioMedicine. 2019;50:156-165.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources