Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Dec;52(Suppl 1):5-23.
doi: 10.1007/s40279-022-01757-1. Epub 2022 Sep 29.

New Horizons in Carbohydrate Research and Application for Endurance Athletes

Affiliations
Review

New Horizons in Carbohydrate Research and Application for Endurance Athletes

Tim Podlogar et al. Sports Med. 2022 Dec.

Abstract

The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.

PubMed Disclaimer

Conflict of interest statement

Gareth Wallis has received research funding from and/or has acted as a consultant for GlaxoSmithKline Ltd., Sugar Nutrition UK, Dairy Management Inc. and Volac International Ltd. Tim Podlogar has no conflicts of interest of potential relevance to the content of this review.

Figures

Fig. 1
Fig. 1
Short-term recovery of muscle and liver glycogen stores after exhaustive exercise using different combinations of monosaccharides. Fructose-glucose carbohydrate mixtures have been demonstrated to be very effective in replenishment of both muscle and liver glycogen stores. On the other hand, while glucose-based carbohydrates cause robust rates of muscle glycogen replenishment, liver glycogen synthesis rates are inferior as compared to a combination of fructose-glucose- and galactose-glucose-based carbohydrates. No data are currently available for muscle glycogen synthesis rates after ingesting a galactose-glucose mixture. It is hypothesized (but not established) that combining fructose-galactose-glucose-based carbohydrates would be optimal for post-exercise repletion of both glycogen pools. CHO carbohydrate
Fig. 2
Fig. 2
Framework for carbohydrate periodization based on the demands of the upcoming exercise session. Exercise intensity domain selection refers to the highest intensity attained during the exercise session. The exact carbohydrate requirements are to be personalized based on the expected energy demands of each exercise session. CHO carbohydrates, CP critical power, LT1 lactate threshold 1, LT2 lactate threshold 2, MLSS maximal lactate steady state

References

    1. Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29:S17–27. doi: 10.1080/02640414.2011.585473. - DOI - PubMed
    1. Thomas DT, Erdman KA, Burke LM. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48:543–68. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=0.... - PubMed
    1. Pelly FE, O’Connor HT, Denyer GS, Caterson ID. Evolution of food provision to athletes at the summer Olympic Games. Nutr Rev. 2011;69:321–32. http://www.ncbi.nlm.nih.gov/pubmed/21631513. Accessed 4 Dec 2021. - PubMed
    1. Krogh A, Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy. Biochem J. 1920;14:290–363. http://www.ncbi.nlm.nih.gov/pubmed/16742941. Accessed 4 Dec 2021. - PMC - PubMed
    1. Bergstrom J, Hultman E. A study of glycogen metabolism in man. J Clin Lab Invest. 1967 doi: 10.3109/00365516709090629. - DOI - PubMed

LinkOut - more resources