Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies
- PMID: 36173689
- DOI: 10.1021/acs.chemrev.2c00200
Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Similar articles
-
Solar fuels via artificial photosynthesis.Acc Chem Res. 2009 Dec 21;42(12):1890-8. doi: 10.1021/ar900209b. Acc Chem Res. 2009. PMID: 19902921
-
Hybrid photocathodes for solar fuel production: coupling molecular fuel-production catalysts with solid-state light harvesting and conversion technologies.Interface Focus. 2015 Jun 6;5(3):20140085. doi: 10.1098/rsfs.2014.0085. Interface Focus. 2015. PMID: 26052422 Free PMC article. Review.
-
Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.Acc Chem Res. 2013 Nov 19;46(11):2355-64. doi: 10.1021/ar300224u. Epub 2013 Jun 3. Acc Chem Res. 2013. PMID: 23730891
-
Energy conversion in natural and artificial photosynthesis.Chem Biol. 2010 May 28;17(5):434-47. doi: 10.1016/j.chembiol.2010.05.005. Chem Biol. 2010. PMID: 20534342 Free PMC article. Review.
-
Solar-Driven CO2 Reduction Using a Semiconductor/Molecule Hybrid Photosystem: From Photocatalysts to a Monolithic Artificial Leaf.Acc Chem Res. 2022 Apr 5;55(7):933-943. doi: 10.1021/acs.accounts.1c00564. Epub 2021 Dec 1. Acc Chem Res. 2022. PMID: 34851099
Cited by
-
Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H2 evolution in water.Nat Chem. 2024 May;16(5):709-716. doi: 10.1038/s41557-024-01483-3. Epub 2024 Mar 25. Nat Chem. 2024. PMID: 38528106
-
Engineering a molecular ruthenium catalyst into three-dimensional metal covalent organic frameworks for efficient water oxidation.Chem Sci. 2023 Oct 5;14(42):11768-11774. doi: 10.1039/d3sc03681b. eCollection 2023 Nov 1. Chem Sci. 2023. PMID: 37920350 Free PMC article.
-
Bio-Inspired Self-Assembly of Enzyme-Micelle Systems for Semi-Artificial Photosynthesis.Angew Chem Int Ed Engl. 2025 Apr 25;64(18):e202424222. doi: 10.1002/anie.202424222. Epub 2025 Mar 3. Angew Chem Int Ed Engl. 2025. PMID: 39951445 Free PMC article.
-
A breath of sunshine: oxygenic photosynthesis by functional molecular architectures.Chem Sci. 2023 Oct 4;14(44):12402-12429. doi: 10.1039/d3sc03780k. eCollection 2023 Nov 15. Chem Sci. 2023. PMID: 38020375 Free PMC article. Review.
-
Chemically Mediated Artificial Electron Transport Chain.ACS Cent Sci. 2024 Apr 10;10(6):1148-1155. doi: 10.1021/acscentsci.4c00165. eCollection 2024 Jun 26. ACS Cent Sci. 2024. PMID: 38947209 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources